/* * analyze_fft4096_iq_F32.cpp Assembled by Bob Larkin 18 Feb 2022 * * External Memory **** BETA TEST VERSION - NOT FULLY TESTED **** <<<<<<<<<< * * This class is Teensy 4.x ONLY. * F32 Bolocks are always 128 floats, and any data rate is OK. * * Converted to F32 floating point input and also extended * for complex I and Q inputs * * Adapted all I/O to be F32 floating point for OpenAudio_ArduinoLibrary * * Future: Add outputs for I & Q FFT x2 for overlapped FFT * * Windowing None, Hann, Kaiser and Blackman-Harris. * * Conversion Copyright (c) 2022 Bob Larkin * Same MIT license as PJRC: * * Audio Library for Teensy 3.X * Copyright (c) 2014, Paul Stoffregen, paul@pjrc.com * * Development of this audio library was funded by PJRC.COM, LLC by sales of * Teensy and Audio Adaptor boards. Please support PJRC's efforts to develop * open source software by purchasing Teensy or other PJRC products. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice, development funding notice, and this permission * notice shall be included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ // *************** TEENSY 4.X ONLY **************** #if defined(__IMXRT1062__) #include #include "analyze_fft4096_iqem_F32.h" // Note: Suppports block size of 128 only. Very "built in." // Move audio data from audio_block_f32_t to the interleaved FFT instance buffer. static void copy_to_fft_buffer1(void *destination, const void *sourceI, const void *sourceQ) { const float *srcI = (const float *)sourceI; const float *srcQ = (const float *)sourceQ; float *dst = (float *)destination; // part of fft_buffer array. 256 floats per call for (int i=0; i < 128; i++) { *dst++ = *srcI++; // real sample, interleave *dst++ = *srcQ++; // imag } } void AudioAnalyzeFFT4096_IQEM_F32::update(void) { audio_block_f32_t *block_i,*block_q; int i, ii; block_i = receiveReadOnly_f32(0); if (!block_i) return; block_q = receiveReadOnly_f32(1); if (!block_q) { release(block_i); return; } // Here with two new blocks of data. These are retained until the FFT // but with new pointers, blocklist_i[] and blocklist_q[]. // uint32_t tt = micros(); Serial.print(state); switch (state) { case 0: blocklist_i[0] = block_i; blocklist_q[0] = block_q; // Copy 2 ptrs state = 1; break; case 1: blocklist_i[1] = block_i; blocklist_q[1] = block_q; state = 2; break; case 2: blocklist_i[2] = block_i; blocklist_q[2] = block_q; state = 3; break; case 3: blocklist_i[3] = block_i; blocklist_q[3] = block_q; state = 4; break; case 4: blocklist_i[4] = block_i; blocklist_q[4] = block_q; state = 5; break; case 5: blocklist_i[5] = block_i; blocklist_q[5] = block_q; state = 6; break; case 6: blocklist_i[6] = block_i; blocklist_q[6] = block_q; state = 7; break; case 7: blocklist_i[7] = block_i; blocklist_q[7] = block_q; state = 8; break; case 8: blocklist_i[8] = block_i; blocklist_q[8] = block_q; state = 9; break; case 9: blocklist_i[9] = block_i; blocklist_q[9] = block_q; state = 10; break; case 10: blocklist_i[10] = block_i; blocklist_q[10] = block_q; state = 11; break; case 11: blocklist_i[11] = block_i; blocklist_q[11] = block_q; state = 12; break; case 12: blocklist_i[12] = block_i; blocklist_q[12] = block_q; state = 13; break; case 13: blocklist_i[13] = block_i; blocklist_q[13] = block_q; state = 14; break; case 14: blocklist_i[14] = block_i; blocklist_q[14] = block_q; state = 15; break; case 15: blocklist_i[15] = block_i; blocklist_q[15] = block_q; state = 16; break; // ******************************************************** // Once things are running, the loop comes back to this point case 16: blocklist_i[16] = block_i; blocklist_q[16] = block_q; // Now work on the FFT output data. This was created in case 31. // This next forming of the sumsq[] takes 66 uSec (was 48 uSec with local memory) count++; for (int i = 0; i < 2048; i++) { // Re-arranging the coefficients. These are bin powers (not Volts) // See DD4WH SDR float ss0 = *(pFFT_buffer + 2*i) * *(pFFT_buffer + 2*i) + *(pFFT_buffer + 2*i+1) * *(pFFT_buffer + 2*i+1); float ss1 = *(pFFT_buffer + 2*(i+2048)) * *(pFFT_buffer + 2*(i+2048)) + *(pFFT_buffer + 2*(i+2048)+1) * *(pFFT_buffer + 2*(i+2048)+1); if(!(pSumsq==NULL)) { // We have memory to do averages if(count==1) { // Starting new average *(pSumsq+i+2048) = ss0; *(pSumsq+i) = ss1; } else if (count <= nAverage) { // Adding on to average *(pSumsq+i+2048) += ss0; *(pSumsq+i) += ss1; } } else // No averaging is used { // Parts of pFFT_buffer are becoming available for // temporary storage, but not all: *(pFFT_buffer+i) = ss0; *(pFFT_buffer+4096+i) = ss1; // Now in pFFT_buffer 0,2047 and 4096,6143 } } // sumsq[] is filled. Wait to state==17 to convert to dBFS, etc state = 17; break; case 17: blocklist_i[17] = block_i; blocklist_q[17] = block_q; // This state==17 block takes 710 uSec for DBFS, but // only 65 for POWER. DB conversions do not need to be under // this interrupt and POWER output should be used if time is short. if (pSumsq==NULL || count>=nAverage) { // Average is not being done or is finished outputflag = false; // Avoid starting read() during block 17 to 18 float inAf = 1.0f/(float)nAverage; for (ii=0; ii < 2048; ii++) { // xAxis, bit 0 left/right; bit 1 low to high if(xAxis & 0X02) i = ii; else i = ii^2048; if(xAxis & 0X01) i = (4095 - i); if(!(pSumsq==NULL)) { // We have memory to do averages if(outputType==FFT_RMS) *(pOutput+i) = sqrtf(inAf* *(pSumsq+ii)); else if(outputType==FFT_POWER) *(pOutput+i) = inAf* *(pSumsq+ii); else if(outputType==FFT_DBFS) *(pOutput+i) = 10.0f*log10f(inAf* *(pSumsq+ii))-66.23f; // Scaled to FS sine wave else *(pOutput+i) = 0.0f; } else { // No averaging if(outputType==FFT_RMS) *(pOutput+i) = sqrtf(*(pFFT_buffer+ii)); else if(outputType==FFT_POWER) *(pOutput+i) = *(pFFT_buffer+ii); else if(outputType==FFT_DBFS) *(pOutput+i) = 10.0f*log10f(*(pFFT_buffer+ii))-66.23f; } // End, no averaging } // End of "over all i" } // end of Average is Finished state = 18; break; case 18: blocklist_i[18] = block_i; blocklist_q[18] = block_q; // Second half of post-FFT processing. dBFS (log10f) is the big user of time. if (pSumsq==NULL || count>=nAverage) { // Average is finished count = 0; float inAf = 1.0f/(float)nAverage; // ii is the index to data source, i is for data output for (int ii=2048; ii < 4096; ii++) { // xAxis, bit 0 left/right; bit 1 low to high if(xAxis & 0X02) i = ii; else i = ii^2048; if(xAxis & 0X01) i = (4095 - i); if(!(pSumsq==NULL)) { // We have memory to do averages if(outputType==FFT_RMS) *(pOutput+i) = sqrtf(inAf* *(pSumsq+ii)); else if(outputType==FFT_POWER) *(pOutput+i) = inAf* *(pSumsq+ii); else if(outputType==FFT_DBFS) *(pOutput+i) = 10.0f*log10f(inAf* *(pSumsq+ii))-66.23f; // Scaled to FS sine wave else *(pOutput+i) = 0.0f; } else { // No averaging being done if(outputType==FFT_RMS) *(pOutput+i) = sqrtf(*(pFFT_buffer+ii+2048)); else if(outputType==FFT_POWER) *(pOutput+i) = *(pFFT_buffer+ii+2048); else if(outputType==FFT_DBFS) *(pOutput+i) = 10.0f*log10f(*(pFFT_buffer+ii+2048))-66.23f; else *(pOutput+i) = 0.0f; } } outputflag = true; } // end of Average is Finished state = 19; break; case 19: blocklist_i[19] = block_i; blocklist_q[19] = block_q; state = 20; break; case 20: blocklist_i[20] = block_i; blocklist_q[20] = block_q; state = 21; break; case 21: blocklist_i[21] = block_i; blocklist_q[21] = block_q; state = 22; break; case 22: blocklist_i[22] = block_i; blocklist_q[22] = block_q; state = 23; break; case 23: blocklist_i[23] = block_i; blocklist_q[23] = block_q; state = 24; break; case 24: blocklist_i[24] = block_i; blocklist_q[24] = block_q; state = 25; break; case 25: blocklist_i[25] = block_i; blocklist_q[25] = block_q; state = 26; break; case 26: blocklist_i[26] = block_i; blocklist_q[26] = block_q; state = 27; break; case 27: blocklist_i[27] = block_i; blocklist_q[27] = block_q; state = 28; break; case 28: blocklist_i[28] = block_i; blocklist_q[28] = block_q; state = 29; break; case 29: blocklist_i[29] = block_i; blocklist_q[29] = block_q; state = 30; break; case 30: blocklist_i[30] = block_i; blocklist_q[30] = block_q; state = 31; break; case 31: blocklist_i[31] = block_i; blocklist_q[31] = block_q; // Copy 8192 data to fft_buffer This state==31 takes about 530 uSec, including the FFT. // i & q interleaved data. copy_to_fft_buffer1(pFFT_buffer+0x000, blocklist_i[0]->data, blocklist_q[0]->data); copy_to_fft_buffer1(pFFT_buffer+0x100, blocklist_i[1]->data, blocklist_q[1]->data); copy_to_fft_buffer1(pFFT_buffer+0x200, blocklist_i[2]->data, blocklist_q[2]->data); copy_to_fft_buffer1(pFFT_buffer+0x300, blocklist_i[3]->data, blocklist_q[3]->data); copy_to_fft_buffer1(pFFT_buffer+0x400, blocklist_i[4]->data, blocklist_q[4]->data); copy_to_fft_buffer1(pFFT_buffer+0x500, blocklist_i[5]->data, blocklist_q[5]->data); copy_to_fft_buffer1(pFFT_buffer+0x600, blocklist_i[6]->data, blocklist_q[6]->data); copy_to_fft_buffer1(pFFT_buffer+0x700, blocklist_i[7]->data, blocklist_q[7]->data); copy_to_fft_buffer1(pFFT_buffer+0x800, blocklist_i[8]->data, blocklist_q[8]->data); copy_to_fft_buffer1(pFFT_buffer+0x900, blocklist_i[9]->data, blocklist_q[9]->data); copy_to_fft_buffer1(pFFT_buffer+0xA00, blocklist_i[10]->data, blocklist_q[10]->data); copy_to_fft_buffer1(pFFT_buffer+0xB00, blocklist_i[11]->data, blocklist_q[11]->data); copy_to_fft_buffer1(pFFT_buffer+0xC00, blocklist_i[12]->data, blocklist_q[12]->data); copy_to_fft_buffer1(pFFT_buffer+0xD00, blocklist_i[13]->data, blocklist_q[13]->data); copy_to_fft_buffer1(pFFT_buffer+0xE00, blocklist_i[14]->data, blocklist_q[14]->data); copy_to_fft_buffer1(pFFT_buffer+0xF00, blocklist_i[15]->data, blocklist_q[15]->data); copy_to_fft_buffer1(pFFT_buffer+0x1000, blocklist_i[16]->data, blocklist_q[16]->data); copy_to_fft_buffer1(pFFT_buffer+0x1100, blocklist_i[17]->data, blocklist_q[17]->data); copy_to_fft_buffer1(pFFT_buffer+0x1200, blocklist_i[18]->data, blocklist_q[18]->data); copy_to_fft_buffer1(pFFT_buffer+0x1300, blocklist_i[19]->data, blocklist_q[19]->data); copy_to_fft_buffer1(pFFT_buffer+0x1400, blocklist_i[20]->data, blocklist_q[20]->data); copy_to_fft_buffer1(pFFT_buffer+0x1500, blocklist_i[21]->data, blocklist_q[21]->data); copy_to_fft_buffer1(pFFT_buffer+0x1600, blocklist_i[22]->data, blocklist_q[22]->data); copy_to_fft_buffer1(pFFT_buffer+0x1700, blocklist_i[23]->data, blocklist_q[23]->data); copy_to_fft_buffer1(pFFT_buffer+0x1800, blocklist_i[24]->data, blocklist_q[24]->data); copy_to_fft_buffer1(pFFT_buffer+0x1900, blocklist_i[25]->data, blocklist_q[25]->data); copy_to_fft_buffer1(pFFT_buffer+0x1A00, blocklist_i[26]->data, blocklist_q[26]->data); copy_to_fft_buffer1(pFFT_buffer+0x1B00, blocklist_i[27]->data, blocklist_q[27]->data); copy_to_fft_buffer1(pFFT_buffer+0x1C00, blocklist_i[28]->data, blocklist_q[28]->data); copy_to_fft_buffer1(pFFT_buffer+0x1D00, blocklist_i[29]->data, blocklist_q[29]->data); copy_to_fft_buffer1(pFFT_buffer+0x1E00, blocklist_i[30]->data, blocklist_q[30]->data); copy_to_fft_buffer1(pFFT_buffer+0x1F00, blocklist_i[31]->data, blocklist_q[31]->data); // Apply the window function, if any, to the time series. Half size window buffer. if(wNum>NO_WINDOW && pWindow) // fixed syntax 14May2022 RSL { for (int i=0; i < 2048; i++) { *(pFFT_buffer + 2*i) *= *(pWindow + i); // real *(pFFT_buffer + 2*i+1) *= *(pWindow + i); // imag } for (int i=0; i < 2048; i++) { // Second half *(pFFT_buffer + 8191 - 2*i) *= *(pWindow + i); *(pFFT_buffer + 8190 - 2*i) *= *(pWindow + i); } } // Teensyduino core for T4.x supports arm_cfft_f32 // arm_cfft_f32 (const arm_cfft_instance_f32 *S, float32_t *p1, // uint8_t ifftFlag, uint8_t bitReverseFlag) // I & O are real/imag interleaved in 8192-float point array p1. arm_cfft_f32(&Sfft, pFFT_buffer, 0, 1); release(blocklist_i[0]); release(blocklist_q[0]); release(blocklist_i[1]); release(blocklist_q[1]); release(blocklist_i[2]); release(blocklist_q[2]); release(blocklist_i[3]); release(blocklist_q[3]); release(blocklist_i[4]); release(blocklist_q[4]); release(blocklist_i[5]); release(blocklist_q[5]); release(blocklist_i[6]); release(blocklist_q[6]); release(blocklist_i[7]); release(blocklist_q[7]); release(blocklist_i[8]); release(blocklist_q[8]); release(blocklist_i[9]); release(blocklist_q[9]); release(blocklist_i[10]); release(blocklist_q[10]); release(blocklist_i[11]); release(blocklist_q[11]); release(blocklist_i[12]); release(blocklist_q[12]); release(blocklist_i[13]); release(blocklist_q[13]); release(blocklist_i[14]); release(blocklist_q[14]); release(blocklist_i[15]); release(blocklist_q[15]); blocklist_i[0] = blocklist_i[16]; blocklist_i[1] = blocklist_i[17]; blocklist_i[2] = blocklist_i[18]; blocklist_i[3] = blocklist_i[19]; blocklist_i[4] = blocklist_i[20]; blocklist_i[5] = blocklist_i[21]; blocklist_i[6] = blocklist_i[22]; blocklist_i[7] = blocklist_i[23]; blocklist_i[8] = blocklist_i[24]; blocklist_i[9] = blocklist_i[25]; blocklist_i[10] = blocklist_i[26]; blocklist_i[11] = blocklist_i[27]; blocklist_i[12] = blocklist_i[28]; blocklist_i[13] = blocklist_i[29]; blocklist_i[14] = blocklist_i[30]; blocklist_i[15] = blocklist_i[31]; blocklist_q[0] = blocklist_q[16]; blocklist_q[1] = blocklist_q[17]; blocklist_q[2] = blocklist_q[18]; blocklist_q[3] = blocklist_q[19]; blocklist_q[4] = blocklist_q[20]; blocklist_q[5] = blocklist_q[21]; blocklist_q[6] = blocklist_q[22]; blocklist_q[7] = blocklist_q[23]; blocklist_q[8] = blocklist_q[24]; blocklist_q[9] = blocklist_q[25]; blocklist_q[10] = blocklist_q[26]; blocklist_q[11] = blocklist_q[27]; blocklist_q[12] = blocklist_q[28]; blocklist_q[13] = blocklist_q[29]; blocklist_q[14] = blocklist_q[30]; blocklist_q[15] = blocklist_q[31]; state = 16; break; // From case 31 } // End of switch & case 31 // Serial.print(","); Serial.println(micros() - tt); } // End update() // End, if Teensy 4.x #endif