/* Hardware-SPDIF for Teensy 4 * Copyright (c) 2019, Frank Bösing, f.boesing@gmx.de * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice, development funding notice, and this permission * notice shall be included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ /* http://www.hardwarebook.info/S/PDIF https://www.mikrocontroller.net/articles/S/PDIF https://en.wikipedia.org/wiki/S/PDIF */ #include #include "output_spdif3_f32.h" #if defined(__IMXRT1062__) #include "utility/imxrt_hw.h" #include "memcpy_audio.h" #include // TODO: convert within update() instead of isr(), into buffer static inline int32_t f32_to_i24(float32_t f) { const float32_t fullscale = (1LL << 23) - 1; if (f > 1.0) return fullscale; if (f < -1.0) return -fullscale; return (int32_t)(f * fullscale); } audio_block_f32_t * AudioOutputSPDIF3_F32::block_left_1st = nullptr; audio_block_f32_t * AudioOutputSPDIF3_F32::block_right_1st = nullptr; audio_block_f32_t * AudioOutputSPDIF3_F32::block_left_2nd = nullptr; audio_block_f32_t * AudioOutputSPDIF3_F32::block_right_2nd = nullptr; bool AudioOutputSPDIF3_F32::update_responsibility = false; float AudioOutputSPDIF3_F32::sample_rate_Hz = AUDIO_SAMPLE_RATE_EXACT; DMAChannel AudioOutputSPDIF3_F32::dma(false); DMAMEM __attribute__((aligned(32))) static int32_t SPDIF_tx_buffer[AUDIO_BLOCK_SAMPLES * 4]; DMAMEM __attribute__((aligned(32))) audio_block_f32_t AudioOutputSPDIF3_F32::block_silent; #define SPDIF_DPLL_GAIN24 0 #define SPDIF_DPLL_GAIN16 1 #define SPDIF_DPLL_GAIN12 2 #define SPDIF_DPLL_GAIN8 3 #define SPDIF_DPLL_GAIN6 4 #define SPDIF_DPLL_GAIN4 5 #define SPDIF_DPLL_GAIN3 6 #define SPDIF_DPLL_GAIN1 7 #define SPDIF_DPLL_GAIN SPDIF_DPLL_GAIN8 //Actual Gain static const uint8_t spdif_gain[8] = {24, 16, 12, 8, 6, 4, 3, 1}; FLASHMEM void AudioOutputSPDIF3_F32::begin(void) { dma.begin(true); // Allocate the DMA channel first block_left_1st = nullptr; block_right_1st = nullptr; memset(&block_silent, 0, sizeof(block_silent)); config_spdif3(sample_rate_Hz); const int nbytes_mlno = 2 * 4; // 8 Bytes per minor loop dma.TCD->SADDR = SPDIF_tx_buffer; dma.TCD->SOFF = 4; dma.TCD->ATTR = DMA_TCD_ATTR_SSIZE(2) | DMA_TCD_ATTR_DSIZE(2); dma.TCD->NBYTES_MLNO = DMA_TCD_NBYTES_MLOFFYES_NBYTES(nbytes_mlno) | DMA_TCD_NBYTES_DMLOE | DMA_TCD_NBYTES_MLOFFYES_MLOFF(-8); dma.TCD->SLAST = -sizeof(SPDIF_tx_buffer); dma.TCD->DADDR = &SPDIF_STL; dma.TCD->DOFF = 4; dma.TCD->DLASTSGA = -8; //dma.TCD->ATTR_DST = ((31 - __builtin_clz(8)) << 3); dma.TCD->CITER_ELINKNO = sizeof(SPDIF_tx_buffer) / nbytes_mlno; dma.TCD->BITER_ELINKNO = sizeof(SPDIF_tx_buffer) / nbytes_mlno; dma.TCD->CSR = DMA_TCD_CSR_INTHALF | DMA_TCD_CSR_INTMAJOR; dma.triggerAtHardwareEvent(DMAMUX_SOURCE_SPDIF_TX); update_responsibility = update_setup(); dma.enable(); dma.attachInterrupt(isr); CORE_PIN14_CONFIG = 3; //3:SPDIF_OUT SPDIF_SCR |= SPDIF_SCR_DMA_TX_EN; SPDIF_STC |= SPDIF_STC_TX_ALL_CLK_EN; // pinMode(13, OUTPUT); } void AudioOutputSPDIF3_F32::isr(void) { const float32_t *src_left, *src_right; const int32_t *end; int32_t *dest; audio_block_f32_t *block_left, *block_right; uint32_t saddr; saddr = (uint32_t)(dma.TCD->SADDR); dma.clearInterrupt(); if (saddr < (uint32_t)SPDIF_tx_buffer + sizeof(SPDIF_tx_buffer) / 2) { // DMA is transmitting the first half of the buffer // so we must fill the second half dest = SPDIF_tx_buffer + AUDIO_BLOCK_SAMPLES*2; end = SPDIF_tx_buffer + AUDIO_BLOCK_SAMPLES*4; } else { // DMA is transmitting the second half of the buffer // so we must fill the first half dest = SPDIF_tx_buffer; end = SPDIF_tx_buffer + AUDIO_BLOCK_SAMPLES*2; } block_left = block_left_1st; if (!block_left) block_left = &block_silent; block_right = block_right_1st; if (!block_right) block_right = &block_silent; src_left = (const float32_t *)(block_left->data); src_right = (const float32_t *)(block_right->data); do { #if IMXRT_CACHE_ENABLED >= 2 SCB_CACHE_DCCIMVAC = (uintptr_t) dest; asm volatile("dsb"); #endif *dest++ = f32_to_i24(*src_left++); *dest++ = f32_to_i24(*src_right++); *dest++ = f32_to_i24(*src_left++); *dest++ = f32_to_i24(*src_right++); *dest++ = f32_to_i24(*src_left++); *dest++ = f32_to_i24(*src_right++); *dest++ = f32_to_i24(*src_left++); *dest++ = f32_to_i24(*src_right++); } while (dest < end); if (block_left != &block_silent) { release(block_left); block_left_1st = block_left_2nd; block_left_2nd = nullptr; } if (block_right != &block_silent) { release(block_right); block_right_1st = block_right_2nd; block_right_2nd = nullptr; } if (update_responsibility) update_all(); //digitalWriteFast(13,!digitalReadFast(13)); } void AudioOutputSPDIF3_F32::update(void) { audio_block_f32_t *block_left, *block_right; block_left = receiveReadOnly_f32(0); // input 0 block_right = receiveReadOnly_f32(1); // input 1 __disable_irq(); if (block_left) { if (block_left_1st == nullptr) { block_left_1st = block_left; block_left = nullptr; } else if (block_left_2nd == nullptr) { block_left_2nd = block_left; block_left = nullptr; } else { audio_block_f32_t *tmp = block_left_1st; block_left_1st = block_left_2nd; block_left_2nd = block_left; block_left = tmp; } } if (block_right) { if (block_right_1st == nullptr) { block_right_1st = block_right; block_right = nullptr; } else if (block_right_2nd == nullptr) { block_right_2nd = block_right; block_right = nullptr; } else { audio_block_f32_t *tmp = block_right_1st; block_right_1st = block_right_2nd; block_right_2nd = block_right; block_right = tmp; } } __enable_irq(); if (block_left) { release(block_left); } if (block_right) { release(block_right); } } void AudioOutputSPDIF3_F32::mute_PCM(const bool mute) { if (mute) SPDIF_SCR |= SPDIF_SCR_VALCTRL; else SPDIF_SCR &= ~SPDIF_SCR_VALCTRL; } uint32_t AudioOutputSPDIF3_F32::dpll_Gain(void) { return spdif_gain[SPDIF_DPLL_GAIN]; } FLASHMEM void AudioOutputSPDIF3_F32::config_spdif3(float fs_Hz) { delay(1); //WHY IS THIS NEEDED? uint32_t fs = fs_Hz; // PLL between 27*24 = 648MHz und 54*24=1296MHz // n1, n2 choosen for compatibility with I2S (same PLL frequency) : int n1 = 4; //SAI prescaler 4 => (n1*n2) = multiple of 4 int n2 = 1 + (24000000 * 27) / (fs * 256 * n1); double C = ((double)fs * 256 * n1 * n2) / 24000000; int c0 = C; int c2 = 10000; int c1 = C * c2 - (c0 * c2); set_audioClock(c0, c1, c2); //use new pred/podf values n1 = 7; //0: divide by 1 (do not use with high input frequencies), 1:/2, 2: /3, 7:/8 n2 = 0; //0: divide by 1, 7: divide by 8 CCM_CCGR5 &= ~CCM_CCGR5_SPDIF(CCM_CCGR_ON); //Clock gate off CCM_CDCDR = (CCM_CDCDR & ~(CCM_CDCDR_SPDIF0_CLK_SEL_MASK | CCM_CDCDR_SPDIF0_CLK_PRED_MASK | CCM_CDCDR_SPDIF0_CLK_PODF_MASK)) | CCM_CDCDR_SPDIF0_CLK_SEL(0) // 0 PLL4, 1 PLL3 PFD2, 2 PLL5, 3 pll3_sw_clk | CCM_CDCDR_SPDIF0_CLK_PRED(n1) | CCM_CDCDR_SPDIF0_CLK_PODF(n2); CCM_CCGR5 |= CCM_CCGR5_SPDIF(CCM_CCGR_ON); //Clock gate on if (!(SPDIF_SCR & (SPDIF_SCR_DMA_RX_EN | SPDIF_SCR_DMA_TX_EN))) { //Serial.print("Reset SPDIF3"); SPDIF_SCR = SPDIF_SCR_SOFT_RESET; //Reset SPDIF while (SPDIF_SCR & SPDIF_SCR_SOFT_RESET) {;} //Wait for Reset (takes 8 cycles) } else return; SPDIF_SCR = SPDIF_SCR_RXFIFOFULL_SEL(0) | // Full interrupt if at least 1 sample in Rx left and right FIFOs SPDIF_SCR_RXAUTOSYNC | SPDIF_SCR_TXAUTOSYNC | SPDIF_SCR_TXFIFOEMPTY_SEL(2) | // Empty interrupt if at most 8 samples in Tx left and right FIFOs SPDIF_SCR_TXFIFO_CTRL(1) | // 0:Send zeros 1: normal operation SPDIF_SCR_VALCTRL | // Outgoing Validity always clear SPDIF_SCR_TXSEL(5) | // 0:off and output 0, 1:Feed-though SPDIFIN, 5:Tx Normal operation SPDIF_SCR_USRC_SEL(3); SPDIF_SRPC = SPDIF_SRPC_CLKSRC_SEL(1) | //if (DPLL Locked) SPDIF_RxClk else tx_clk (SPDIF0_CLK_ROOT) SPDIF_SRPC_GAINSEL(SPDIF_DPLL_GAIN); uint32_t pllclock = (c0 + (float)c1 / c2) * 24000000ULL; //677376000 Hz uint32_t clock = pllclock / (1 + n1) / (1 + n2); uint32_t clkdiv = clock / (fs * 64); // 1 .. 128 uint32_t mod = clock % (fs * 64); if (mod > ((fs * 64) / 2)) clkdiv += 1; //nearest divider #if 0 Serial.printf("PLL: %d\n", pllclock); Serial.printf("clock: %d\n", clock); Serial.printf("clkdiv: %d\n", clkdiv); #endif SPDIF_STC = SPDIF_STC_TXCLK_SOURCE(1) | //tx_clk input (from SPDIF0_CLK_ROOT) SPDIF_STC_TXCLK_DF(clkdiv - 1); } #endif // __IMXRT1062__ #if defined(__MK66FX1M0__) || defined(__MK64FX512__) || defined(__MK20DX256__) || defined(__MKL26Z64__) // empty code to allow compile (but no sound output) on other Teensy models void AudioOutputSPDIF3_F32::update(void) { } void AudioOutputSPDIF3_F32::begin(void) { } void AudioOutputSPDIF3_F32::mute_PCM(const bool mute) { } bool AudioOutputSPDIF3_F32::pll_locked(void) { return false; } #endif