/* analyze_fft1024_F32.h Converted from Teensy I16 Audio Library * * Audio Library for Teensy 3.X * Copyright (c) 2014, Paul Stoffregen, paul@pjrc.com * * Development of this audio library was funded by PJRC.COM, LLC by sales of * Teensy and Audio Adaptor boards. Please support PJRC's efforts to develop * open source software by purchasing Teensy or other PJRC products. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice, development funding notice, and this permission * notice shall be included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ /* Translated from I16 to F32. Bob Larkin 16 Feb 2021 * Does real input FFT of 1024 points. Output is not audio, and is magnitude * only. Multiple output formats of RMS (same as I16 version, and default), * Power or dBFS (full scale). Output can be bin by bin or a pointer to * the output array is available. Several window functions are provided by * in-class design, or a custom window can be provided from the INO. * * Functions (See comments below and #defines above: * bool available() * float read(unsigned int binNumber) * float read(unsigned int binFirst, unsigned int binLast) * int windowFunction(int wNum) * int windowFunction(int wNum, float _kdb) // Kaiser only * float* getData(void) * float* getWindow(void) * void putWindow(float *pwin) * void setOutputType(int _type) * void setNAverage(int nAverage) * * Timing, max is longest update() time. Comparison is using full complex FFT * and no load sharing on "states". * T3.6 Windowed, Power Out, 682 uSec (was 975 w/ 1024 FFT) * T3.6 Windowed, dBFS out, 834 uSec (was 1591 w/1024 FFT) * No Window saves 60 uSec on T3.6 for any output. * T4.0 Windowed, Power Out, 54 uSec (was 156 w/1024 FFT) * T4.0 Windowed, dBFS Out, 203 uSec (was 302 w/1024 FFT) * Scaling: * Full scale for floating point DSP is a nebulous concept. Normally the * full scale is -1.0 to +1.0. This is an unscaled FFT and for a sine * wave centered in frequency on a bin and of FS amplitude, the power * at that center bin will grow by 1024^2/4 = 262144 without windowing. * Windowing loss cuts this down. The RMS level can grow to sqrt(262144) * or 512. The dBFS has been scaled to make this max value 0 dBFS by * removing 54.2 dB. With floating point, the dynamic range is maintained * no matter how it is scaled, but this factor needs to be considered * when building the INO. */ // Fixed float/int problem in read(first, last). RSL 3 Mar 21 // Converted to using half-size FFT for real input, with no zero inputs. // See E. Oran Brigham and many other FFT references. 16 March 2021 RSL // Moved post-FFT calculations to state 4 to load share. RSL 18 Mar 2021 #ifndef analyze_fft1024_F32_h_ #define analyze_fft1024_F32_h_ #include "Arduino.h" #include "AudioStream_F32.h" #include "arm_math.h" #include "mathDSP_F32.h" #if defined(__IMXRT1062__) #include "arm_const_structs.h" #endif // Doing an FFT with NFFT real inputs #define NFFT 1024 #define NFFT_M1 NFFT-1 #define NFFT_D2 NFFT/2 #define NFFT_D2M1 (NFFT/2)-1 #define NFFT_X2 NFFT*2 #define FFT_PI 3.14159265359f #define FFT_2PI 6.28318530718f #define FFT_RMS 0 #define FFT_POWER 1 #define FFT_DBFS 2 #define NO_WINDOW 0 #define AudioWindowNone 0 #define AudioWindowHanning1024 1 #define AudioWindowKaiser1024 2 #define AudioWindowBlackmanHarris1024 3 class AudioAnalyzeFFT1024_F32 : public AudioStream_F32 { //GUI: inputs:1, outputs:0 //this line used for automatic generation of GUI node //GUI: shortName:FFT1024 public: AudioAnalyzeFFT1024_F32() : AudioStream_F32(1, inputQueueArray) { // __MK20DX128__ T_LC; __MKL26Z64__ T3.0; __MK20DX256__T3.1 and T3.2 // __MK64FX512__) T3.5; __MK66FX1M0__ T3.6; __IMXRT1062__ T4.0 and T4.1 #if defined(__IMXRT1062__) // Teensy4 core library has the right files for new FFT // arm CMSIS library has predefined structures of type arm_cfft_instance_f32 Sfft = arm_cfft_sR_f32_len512; // Like this. Changes with size <<< #else arm_cfft_radix2_init_f32(&fft_inst, NFFT_D2, 0, 1); // for T3.x (check radix2/radix4)<<< #endif // This class is always 128 block size. Any sample rate. No use of "settings" useHanningWindow(); // Factors for using half size complex FFT for(int n=0; nNFFT_D2M1 || binNumber<0) return 0.0; return output[binNumber]; } // Return sum of several bins. Normally use with power output. // This produces the equivalent of bigger bins. float read(unsigned int binFirst, unsigned int binLast) { if (binFirst > binLast) { unsigned int tmp = binLast; binLast = binFirst; binFirst = tmp; } if (binFirst > NFFT_D2M1) return 0.0; if (binLast > NFFT_D2M1) binLast = NFFT_D2M1; float sum = 0.0f; do { sum += output[binFirst++]; } while (binFirst <= binLast); return sum; } int windowFunction(int wNum) { if(wNum == AudioWindowKaiser1024) // Changes with size <<< return -1; // Kaiser needs the kdb windowFunction(wNum, 0.0f); return 0; } int windowFunction(int wNum, float _kdb) { float kd; pWin = window; if(wNum == NO_WINDOW) pWin = NULL; else if (wNum == AudioWindowKaiser1024) { // Changes with size <<< if(_kdb<20.0f) kd = 20.0f; else kd = _kdb; useKaiserWindow(kd); } else if (wNum == AudioWindowBlackmanHarris1024) // Changes with size <<< useBHWindow(); else useHanningWindow(); // Default return 0; } // Fast pointer transfer. Be aware that the data will go away // after the next 512 data points occur. float* getData(void) { return output; } // You can use this to design windows float* getWindow(void) { return window; } // Bring custom window from the INO void putWindow(float *pwin) { float *p = window; for(int i=0; i