/* * FFT_Overrlapped_OA_F32 * * Purpose: Encapsulate the ARM floating point FFT/IFFT functions * in a way that naturally interfaces to my float32 * extension of the Teensy Audio Library. * * Provides functionality to do overlapped FFT/IFFT where * each audio block is a fraction (1, 1/2, 1/4) of the * totaly FFT length. This class handles all of the * data shuffling to composite the previous data blocks * with the current data block to provide the full FFT. * Does similar data shuffling (overlapp-add) for IFFT. * * Created: Chip Audette (openaudio.blogspot.com) * Jan-Jul 2017 * * Typical Usage as FFT: * //setup the audio stuff * float sample_rate_Hz = 44100.0; //define sample rate * int audio_block_samples = 32; //define size of audio blocks * AudioSettings_F32 audio_settings(sample_rate_Hz, audio_block_samples); * // ... continue creating all of your Audio Processing Blocks ... * * // within a custom audio processing algorithm that you've written * // you'd create the FFT and IFFT elements * int NFFT = 128; //define length of FFT that you want (multiple of audio_block_samples) * FFT_Overrlapped_F32 FFT_obj(audio_settings,NFFT); //Creare FFT object * FFT_Overrlapped_F32 IFFT_obj(audio_settings,NFFT); //Creare IFFT object * float complex_2N_buffer[2*NFFT]; //create buffer to hold the FFT output * * // within your own algorithm's "update()" function (which is what * // is called automatically by the Teensy Audio Libarary approach * // to audio processing), you can execute the FFT and IFFT * * // First, get the audio and convert to frequency-domain using an FFT * audio_block_f32_t *in_audio_block = AudioStream_F32::receiveReadOnly_f32(); * FFT_obj.execute(in_audio_block, complex_2N_buffer); //output is in complex_2N_buffer * AudioStream_F32::release(in_audio_block); //We just passed ownership to FFT_obj, so release it here. * * // Next do whatever processing you'd like on the frequency domain data * // that is held in complex_2N_buffer * * // Finally, you can convert back to the time domain via IFFT * audio_block_f32_t *out_audio_block = IFFT_obj.execute(complex_2N_buffer); * //note that the "out_audio_block" is mananged by IFFT_obj, so don't worry about releasing it. * * * https://forum.pjrc.com/threads/53668-fft-ifft?highlight=IFFT willie.from.texas 9-10-2018 * I've been using the CMSIS Version 5.3.0 DSP Library since May 2018 (see github.com/ARM-software/CMSIS_5). * I might be the only person on this forum using it. The library allows me to use the 32-bit floating point * capability of the Teensy 3.6. I have been able to use it in real-time with 16-bit sample rates * out of both ADCs up to around 450 kHz (i-q data). I'm very happy with the performance I am obtaining. * Here is the FFT/IFFT performance I am getting with the library: * # Points Forward rfft Inverse rfft Forward cfft Inverse cfft * 512 201 us 247 us 239 us 294 us * 1024 362 us 454 us 588 us 714 us * 2048 846 us 1066 us 1376 us 1620 us * 4096 1860 us 2304 us 2504 us 2990 us * * * License: MIT License */ #ifndef _FFT_Overlapped_OA_F32_h #define _FFT_Overlapped_OA_F32_h #include "AudioStream_F32.h" #include #include "FFT_OA_F32.h" //#include "utility/dspinst.h" //copied from analyze_fft256.cpp. Do we need this? // set the max amount of allowed overlap...some number larger than you'll want to use #define MAX_N_BUFF_BLOCKS 32 //32 blocks x 16 sample blocks enables NFFT = 512, if the Teensy could keep up. class FFT_Overlapped_Base_OA_F32 { //handles all the data structures for the overlapping stuff. Doesn't care if FFT or IFFT public: FFT_Overlapped_Base_OA_F32(void) {}; ~FFT_Overlapped_Base_OA_F32(void) { if (N_BUFF_BLOCKS > 0) { for (int i = 0; i < N_BUFF_BLOCKS; i++) { if (buff_blocks[i] != NULL) AudioStream_F32::release(buff_blocks[i]); } } if (complex_buffer != NULL) delete complex_buffer; } virtual int setup(const AudioSettings_F32 &settings, const int _N_FFT) { int N_FFT; ///choose valid _N_FFT if (!FFT_F32::is_valid_N_FFT(_N_FFT)) { Serial.println(F("FFT_Overlapped_Base_F32: *** ERROR ***")); Serial.print(F(" : N_FFT ")); Serial.print(_N_FFT); Serial.print(F(" is not allowed. Try a power of 2 between 16 and 2048")); N_FFT = -1; return N_FFT; } //how many buffers will compose each FFT? audio_block_samples = settings.audio_block_samples; N_BUFF_BLOCKS = _N_FFT / audio_block_samples; //truncates! N_BUFF_BLOCKS = max(1,min(MAX_N_BUFF_BLOCKS,N_BUFF_BLOCKS)); //what does the fft length actually end up being? N_FFT = N_BUFF_BLOCKS * audio_block_samples; //allocate memory for buffers...this is dynamic allocation. Always dangerous. complex_buffer = new float32_t[2*N_FFT]; //should I check to see if it was successfully allcoated? //initialize the blocks for holding the previous data for (int i = 0; i < N_BUFF_BLOCKS; i++) { buff_blocks[i] = AudioStream_F32::allocate_f32(); clear_audio_block(buff_blocks[i]); } return N_FFT; } virtual int getNFFT(void) = 0; virtual int getNBuffBlocks(void) { return N_BUFF_BLOCKS; } protected: int N_BUFF_BLOCKS = 0; int audio_block_samples; audio_block_f32_t *buff_blocks[MAX_N_BUFF_BLOCKS]; float32_t *complex_buffer; void clear_audio_block(audio_block_f32_t *block) { for (int i = 0; i < block->length; i++) block->data[i] = 0.f; } }; class FFT_Overlapped_OA_F32: public FFT_Overlapped_Base_OA_F32 { public: //constructors FFT_Overlapped_OA_F32(void): FFT_Overlapped_Base_OA_F32() {}; FFT_Overlapped_OA_F32(const AudioSettings_F32 &settings): FFT_Overlapped_Base_OA_F32() { } FFT_Overlapped_OA_F32(const AudioSettings_F32 &settings, const int _N_FFT): FFT_Overlapped_Base_OA_F32() { setup(settings,_N_FFT); } virtual int setup(const AudioSettings_F32 &settings, const int _N_FFT) { int N_FFT = FFT_Overlapped_Base_OA_F32::setup(settings, _N_FFT); //setup the FFT routines N_FFT = myFFT.setup(N_FFT); return N_FFT; } virtual void execute(audio_block_f32_t *block, float *complex_2N_buffer); virtual int getNFFT(void) { return myFFT.getNFFT(); }; FFT_F32* getFFTObject(void) { return &myFFT; }; virtual void rebuildNegativeFrequencySpace(float *complex_2N_buffer) { myFFT.rebuildNegativeFrequencySpace(complex_2N_buffer); } private: FFT_F32 myFFT; }; class IFFT_Overlapped_OA_F32: public FFT_Overlapped_Base_OA_F32 { public: //constructors IFFT_Overlapped_OA_F32(void): FFT_Overlapped_Base_OA_F32() {}; IFFT_Overlapped_OA_F32(const AudioSettings_F32 &settings): FFT_Overlapped_Base_OA_F32() { } IFFT_Overlapped_OA_F32(const AudioSettings_F32 &settings, const int _N_FFT): FFT_Overlapped_Base_OA_F32() { setup(settings,_N_FFT); } virtual int setup(const AudioSettings_F32 &settings, const int _N_FFT) { int N_FFT = FFT_Overlapped_Base_OA_F32::setup(settings, _N_FFT); //setup the FFT routines N_FFT = myIFFT.setup(N_FFT); return N_FFT; } virtual audio_block_f32_t* execute(float *complex_2N_buffer); virtual int getNFFT(void) { return myIFFT.getNFFT(); }; IFFT_F32* getFFTObject(void) { return &myIFFT; }; IFFT_F32* getIFFTObject(void) { return &myIFFT; }; private: IFFT_F32 myIFFT; }; #endif