/*------------------------------------------------------------------------------------ AudioAlignLR_F32.cpp 3-21-2022 Author: Bob Larkin W7PUA Date: 28 Feb 2022 See AudioAlignLR_F32.h for notes. Copyright (c) 2022 Robert Larkin Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ------------------------------------------------------------------------------- */ #include "AudioAlignLR_F32.h" void AudioAlignLR_F32::update(void) { audio_block_f32_t *block_L,*block_R; audio_block_f32_t *block2_L,*block2_R; audio_block_f32_t *blockOutTestSignal; uint16_t i, j, k; // uint32_t t0 = micros(); // Measure time if(currentTPinfo.TPstate == TP_IDLE) return; block_L = AudioStream_F32::receiveWritable_f32(0); if (!block_L) return; block_R = AudioStream_F32::receiveWritable_f32(1); if (!block_R) { AudioStream_F32::release(block_L); return; } block2_L = AudioStream_F32::allocate_f32(); if (!block2_L) { AudioStream_F32::release(block_L); AudioStream_F32::release(block_R); return; } block2_R = AudioStream_F32::allocate_f32(); if (!block2_R) { AudioStream_F32::release(block_L); AudioStream_F32::release(block_R); AudioStream_F32::release(block2_L); return; } blockOutTestSignal = AudioStream_F32::allocate_f32(); if(currentTPinfo.TPsignalHardware==TP_SIGNAL_CODEC && !blockOutTestSignal) { AudioStream_F32::release(block_L); AudioStream_F32::release(block_R); AudioStream_F32::release(block2_L); AudioStream_F32::release(block2_R); return; } // Input data is now in block_L and block_R. Filter from there to // block2_L and block2_R if(useLRfilter) { arm_fir_f32(&fir_instL, block_L->data, block2_L->data, block_L->length); arm_fir_f32(&fir_instR, block_R->data, block2_R->data, block_R->length); } else for(i=0; ilength; i++) { block2_L->data[i] = block_L->data[i]; block2_R->data[i] = block_R->data[i]; } // Input data is now in block_L and block_R. Filtered data is in // block2_L and block2_R // One of these next 2 may be needed. They are saved for next update TPextraL = block_L->data[127]; TPextraR = block_R->data[127]; // Find four cross-correlations for time shifted L-R combinations. // Use filtered data if(currentTPinfo.TPstate==TP_MEASURE) { currentTPinfo.xcVal[0]=0.0f; // In phase currentTPinfo.xcVal[1]=0.0f; // Shift I currentTPinfo.xcVal[2]=0.0f; // DNApply, shift 2 time slots currentTPinfo.xcVal[3]=0.0f; // Shift Q for(j=0; j<4; j++) { for(k=0; k<124; k++) // Use sum of 124 x-c values on filtered data { currentTPinfo.xcVal[j] += block2_L->data[k] * block2_R->data[k+j]; } } currentTPinfo.xNorm = 0.0f; for(k=0; k<4; k++) currentTPinfo.xNorm += fabsf( currentTPinfo.xcVal[k] ); // Decision time. Still in Measure. Can we leave? Need one more update()? // Sort out the offset that is cross-correlated if(currentTPinfo.nMeas>5 && currentTPinfo.xNorm > 0.0001f) // Get past junk at startup { currentTPinfo.TPerror = ERROR_TP_NONE; // Change later if not true needOneMore = true; // Change later if not true // Redo (12 March 2022) with normalized values float32_t xcN[4]; for(j=0; j<4; j++) xcN[j] = currentTPinfo.xcVal[j]/currentTPinfo.xNorm; // Look for a good cross-correlation with the normalized values if(xcN[0] - xcN[2] > 0.75f) currentTPinfo.neededShift = 0; else if(xcN[1] - xcN[3] > 0.75f) currentTPinfo.neededShift = 1; else if(xcN[3] - xcN[1] > 0.75f) currentTPinfo.neededShift = -1; else // Don't have a combination awith much cross-correlation { currentTPinfo.neededShift = 0; // Just a guess currentTPinfo.TPerror = ERROR_TP_BAD_DATA; // Probably no, or low signal needOneMore = false; // Not yet } } if(currentTPinfo.nMeas>5 && needOneMore==false && currentTPinfo.TPerror==ERROR_TP_NONE) { needOneMore = true; // Last may have been partial data set } else if(needOneMore==true && currentTPinfo.TPerror==ERROR_TP_NONE) // We're done measuring { currentTPinfo.TPstate = TP_RUN; // Not TP_MEASURE. State doesn't change from here on. needOneMore = false; if(currentTPinfo.TPsignalHardware == TP_SIGNAL_CODEC) digitalWrite(controlPinNumber, 0 ^ (uint16_t)controlPinInvert); // Stop test audio // Serial.println("Stop Square Wave audio path"); } else // Try again from the start { // Serial.println("Re-start TP Measure"); currentTPinfo.TPstate = TP_MEASURE; if(currentTPinfo.TPsignalHardware==TP_SIGNAL_CODEC) digitalWrite(controlPinNumber, 1 & (uint16_t)controlPinInvert); currentTPinfo.neededShift = 0; currentTPinfo.TPerror = ERROR_TP_EARLY; needOneMore = false; } } // End state==TP_MEASURE else if(currentTPinfo.TPstate == TP_RUN) { if(currentTPinfo.neededShift == 0) { // Serial.println("No shift"); } else if(currentTPinfo.neededShift == 1) { // Serial.println("Shift 1"); for(i=127; i>0; i--) block_L->data[i] = block_L->data[i-1]; // Move all down one block_L->data[0] = TPextraL; // From last update // Note: block_L->data[127] is saved for next update, and not // transmitted now. } else if(currentTPinfo.neededShift == -1) { // Serial.println("Shift -1"); for(i=127; i>0; i--) block_R->data[i] = block_R->data[i-1]; block_R->data[0] = TPextraR; } // Only transmit data in TP_RUN AudioStream_F32::transmit(block_L, 0); // Shifted AudioStream_F32::transmit(block_R, 1); // as needed } // End state==TP_RUN // But, always release the blocks AudioStream_F32::release(block_L); AudioStream_F32::release(block_R); AudioStream_F32::release(block2_L); AudioStream_F32::release(block2_R); // TP_MEASURE needs a fs/4 test signal if(currentTPinfo.TPsignalHardware == TP_SIGNAL_CODEC) { if(currentTPinfo.TPstate == TP_MEASURE) { for(int kk=0; kk<128; kk++) // Generate fs/4 square wave { // A +/- 0.8 square wave at fs/4 Hz blockOutTestSignal->data[kk] = -0.8+1.6*(float32_t)((kk/2)&1); } } AudioStream_F32::transmit(blockOutTestSignal, 2); // NOTE: Goes to third output } AudioStream_F32::release(blockOutTestSignal); currentTPinfo.nMeas++; // Serial.println(micros() - t0); // for timing }