Examples: Adding AudioEffectMine

pull/1/head
Chip Audette 8 years ago
parent d0bfbf797b
commit 1742b08255
  1. 90
      examples/MyAudioEffect_Float/AudioEffectMine_F32.h
  2. 138
      examples/MyAudioEffect_Float/MyAudioEffect_Float.ino

@ -0,0 +1,90 @@
/*
AudioEffectMine
Created: Chip Audette, December 2016
Purpose; Here is the skeleton of a audio processing algorithm that will
(hopefully) make it easier for people to start making their own
algorithm.
This processes a single stream fo audio data (ie, it is mono)
MIT License. use at your own risk.
*/
#include <arm_math.h> //ARM DSP extensions. https://www.keil.com/pack/doc/CMSIS/DSP/html/index.html
#include <AudioStream_F32.h>
class AudioEffectMine_F32 : public AudioStream_F32
{
public:
//constructor
AudioEffectMine_F32(void) : AudioStream_F32(1, inputQueueArray_f32) {
//do any setup activities here
};
//here's the method that is called automatically by the Teensy Audio Library
void update(void) {
//Serial.println("AudioEffectMine_F32: doing update()"); //for debugging.
audio_block_f32_t *audio_block;
audio_block = AudioStream_F32::receiveWritable_f32();
if (!audio_block) return;
//do your work
applyMyAlgorithm(audio_block);
///transmit the block and release memory
AudioStream_F32::transmit(audio_block);
AudioStream_F32::release(audio_block);
}
// !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!11
// Here is where you can add your algorithm.
// This function gets called block-wise...which is usually hard-coded to every 128 samples
void applyMyAlgorithm(audio_block_f32_t *audio_block) {
//Add whatever you'd like here. I'm going to show a couple of examples below.
//you can delete all of these examples. They're just to illustrate.
//More examples of fast (DSP accelerated) operations are at: https://github.com/chipaudette/OpenAudio/blob/master/Docs/Programming%20Algorithms/Using%20DSP%20Exentions.md
// //apply a fixed gain...the whole block is processed with this one command
//float32_t gain = 2.0; %here's 6 dB of gain
//arm_scale_f32(audio_block->data, gain, audio_block->data, audio_block->length); //uses ARM DSP for speed!
// //compute the power of each sample...the whole block is processed with this one command
// audio_block_f32_t *audio_pow_block = AudioStream_F32::allocate_f32();
// arm_mult_f32(audio_block->data, audio_block->data, audio_pow_block->data, audio_block->length);
// //loop over each sample and do something on a point-by-point basis (when it cannot be done as a block)
//for (int i=0; i < audio_block->length; i++) {
// //as a boring example, let's add the user_parameter value to every sample. yes, this
// //addition operation could have been done with a DSP-accelerated function, but I'm
// //simply trying to illustrate how to loop on your audio samples.
// audio_block->data[i] = audio_block->data[i] + user_parameter;
//}
// //clean up...if you allocated any memory in the lines above
//Audiostream_F32::release(audio_pow_block);
} //end of applyMyAlgorithms
// !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
// Call this method in your main program if you want to set the value of your user parameter.
// The user parameter can be used in your algorithm above. The user_parameter variable was
// created in the "private:" section of this class, which appears a little later in this file.
// Feel free to create more user parameters (and to use better names for your variables)
// for use in this class.
float32_t setUserParameter(float val) {
return user_parameter = val;
}
private:
//state-related variables
audio_block_f32_t *inputQueueArray_f32[1]; //memory pointer for the input to this module
//this value can be set from the outside (such as from the potentiometer) to control
//a parameter within your algorithm
float32_t user_parameter = 0.0;
}; //end class definition for AudioEffectMine_F32

@ -0,0 +1,138 @@
/*
BasicGain
Created: Chip Audette, Dec 2016
Purpose: Be a blank canvas for adding your own floating-point audio processing.
Uses Teensy Audio Adapter.
Assumes microphones (or whatever) are attached to the LINE IN (stereo)
Listens potentiometer mounted to Audio Board to provde a control signal.
MIT License. use at your own risk.
*/
//These are the includes from the Teensy Audio Library
#include <Audio.h> //Teensy Audio Library
#include <Wire.h>
#include <SPI.h>
#include <SD.h>
#include <SerialFlash.h>
#include <OpenAudio_ArduinoLibrary.h> //for AudioConvert_I16toF32, AudioConvert_F32toI16, and AudioEffectGain_F32
#include "AudioEffectMine_F32.h";
//create audio library objects for handling the audio
AudioControlSGTL5000 sgtl5000_1; //controller for the Teensy Audio Board
AudioInputI2S i2s_in; //Digital audio *from* the Teensy Audio Board ADC. Sends Int16. Stereo.
AudioOutputI2S i2s_out; //Digital audio *to* the Teensy Audio Board DAC. Expects Int16. Stereo
AudioConvert_I16toF32 int2Float1, int2Float2; //Converts Int16 to Float. See class in AudioStream_F32.h
AudioEffectMine_F32 effect1, effect2; //This is your own algorithms
AudioConvert_F32toI16 float2Int1, float2Int2; //Converts Float to Int16. See class in AudioStream_F32.h
//Make all of the audio connections
AudioConnection patchCord1(i2s_in, 0, int2Float1, 0); //connect the Left input to the Left Int->Float converter
AudioConnection patchCord2(i2s_in, 1, int2Float2, 0); //connect the Right input to the Right Int->Float converter
AudioConnection_F32 patchCord10(int2Float1, 0, effect1, 0); //Left. makes Float connections between objects
AudioConnection_F32 patchCord11(int2Float2, 0, effect2, 0); //Right. makes Float connections between objects
AudioConnection_F32 patchCord12(effect1, 0, float2Int1, 0); //Left. makes Float connections between objects
AudioConnection_F32 patchCord13(effect2, 0, float2Int2, 0); //Right. makes Float connections between objects
AudioConnection patchCord20(float2Int1, 0, i2s_out, 0); //connect the Left float processor to the Left output
AudioConnection patchCord21(float2Int2, 0, i2s_out, 1); //connect the Right float processor to the Right output
// which input on the audio shield will be used?
const int myInput = AUDIO_INPUT_LINEIN;
//const int myInput = AUDIO_INPUT_MIC;
//I have a potentiometer on the Teensy Audio Board
#define POT_PIN A1 //potentiometer is tied to this pin
// define the setup() function, the function that is called once when the device is booting
void setup() {
Serial.begin(115200); //open the USB serial link to enable debugging messages
delay(500); //give the computer's USB serial system a moment to catch up.
Serial.println("OpenAudio_ArduinoLibrary: MyAudioEffect_Float...");
// Audio connections require memory
AudioMemory(10); //allocate Int16 audio data blocks
AudioMemory_F32(10); //allocate Float32 audio data blocks
// Enable the audio shield, select input, and enable output
sgtl5000_1.enable(); //start the audio board
sgtl5000_1.inputSelect(myInput); //choose line-in or mic-in
sgtl5000_1.volume(0.8); //volume can be 0.0 to 1.0. 0.5 seems to be the usual default.
sgtl5000_1.lineInLevel(10, 10); //level can be 0 to 15. 5 is the Teensy Audio Library's default
sgtl5000_1.adcHighPassFilterDisable(); //reduces noise. https://forum.pjrc.com/threads/27215-24-bit-audio-boards?p=78831&viewfull=1#post78831
// setup any other other features
pinMode(POT_PIN, INPUT); //set the potentiometer's input pin as an INPUT
} //end setup()
// define the loop() function, the function that is repeated over and over for the life of the device
void loop() {
//choose to sleep ("wait for interrupt") instead of spinning our wheels doing nothing but consuming power
asm(" WFI"); //ARM-specific. Will wake on next interrupt. The audio library issues tons of interrupts, so we wake up often.
//service the potentiometer...if enough time has passed
servicePotentiometer(millis());
//update the memory and CPU usage...if enough time has passed
printMemoryAndCPU(millis());
} //end loop()
//servicePotentiometer: listens to the blue potentiometer and sends the new pot value
// to the audio processing algorithm as a control parameter
void servicePotentiometer(unsigned long curTime_millis) {
static unsigned long updatePeriod_millis = 100; //how many milliseconds between updating the potentiometer reading?
static unsigned long lastUpdate_millis = 0;
static float prev_val = 0;
//has enough time passed to update everything?
if (curTime_millis < lastUpdate_millis) lastUpdate_millis = 0; //handle wrap-around of the clock
if ((curTime_millis - lastUpdate_millis) > updatePeriod_millis) { //is it time to update the user interface?
//read potentiometer
float val = float(analogRead(POT_PIN)) / 1024.0; //0.0 to 1.0
val = 0.1 * (float)((int)(10.0 * val + 0.5)); //quantize so that it doesn't chatter
//add code here to change the potentiometer value to something useful (like gain_dB?)
// ..... add code here if you'd like ......
//send the potentiometer value to your algorithm as a control parameter
if (abs(val - prev_val) > 0.05) { //is it different than befor?
Serial.print("Sending new value to my algorithms: "); Serial.println(val);
effect1.setUserParameter(val); effect2.setUserParameter(val);
}
prev_val = val; //use the value the next time around
} // end if
} //end servicePotentiometer();
void printMemoryAndCPU(unsigned long curTime_millis) {
static unsigned long updatePeriod_millis = 2000; //how many milliseconds between updating gain reading?
static unsigned long lastUpdate_millis = 0;
//has enough time passed to update everything?
if (curTime_millis < lastUpdate_millis) lastUpdate_millis = 0; //handle wrap-around of the clock
if ((curTime_millis - lastUpdate_millis) > updatePeriod_millis) { //is it time to update the user interface?
Serial.print("CPU: Usage, Max: ");
Serial.print(AudioProcessorUsage());
Serial.print(", ");
Serial.print(AudioProcessorUsageMax());
Serial.print(" ");
Serial.print("Int16 Memory: ");
Serial.print(AudioMemoryUsage());
Serial.print(", ");
Serial.print(AudioMemoryUsageMax());
Serial.print(" ");
Serial.print("Float Memory: ");
Serial.print(AudioMemoryUsage_F32());
Serial.print(", ");
Serial.print(AudioMemoryUsageMax_F32());
Serial.println();
lastUpdate_millis = curTime_millis; //we will use this value the next time around.
}
}
Loading…
Cancel
Save