You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
MicroMDAEPiano/effect_modulated_delay.cpp

195 lines
6.2 KiB

/* Audio Library for Teensy 3.X
Copyright (c) 2014, Pete (El Supremo)
Copyright (c) 2019, Holger Wirtz
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
#include <Arduino.h>
#include <Audio.h>
#include "limits.h"
#include "effect_modulated_delay.h"
#include "spline.h"
#include "config.h"
/******************************************************************/
// Based on; A u d i o E f f e c t D e l a y
// Written by Pete (El Supremo) Jan 2014
// 140529 - change to handle mono stream - change modify() to voices()
// 140219 - correct storage class (not static)
// 190527 - added modulation input (by Holger Wirtz)
boolean AudioEffectModulatedDelay::begin(short *delayline, int d_length)
{
#if 0
Serial.print(F("AudioEffectModulatedDelay.begin(Chorus delay line length = "));
Serial.print(d_length);
Serial.println(F(")"));
#endif
_delayline = NULL;
_delay_length = 0;
_circ_idx = 0;
if (delayline == NULL) {
return (false);
}
if (d_length < 10) {
return (false);
}
_delayline = delayline;
_delay_length = _max_delay_length = d_length;
// init filter
filter.numStages = 1;
filter.pState = filter_state;
filter.pCoeffs = filter_coeffs;
calcModFilterCoeff(5000.0, 0.0, 5.0);
return (true);
}
void AudioEffectModulatedDelay::update(void)
{
audio_block_t *block;
audio_block_t *modulation;
if (_delayline == NULL)
return;
block = receiveWritable(0);
modulation = receiveReadOnly(1);
if (block && modulation)
{
int16_t *bp;
float *mp;
float mod_idx;
float mod_number;
float mod_fraction;
#ifdef INTERPOLATE_MODE
int8_t j;
float x[INTERPOLATION_WINDOW_SIZE];
float y[INTERPOLATION_WINDOW_SIZE];
Spline s(x, y, INTERPOLATION_WINDOW_SIZE, INTERPOLATE_MODE);
#endif
// (Filter implementation: https://web.fhnw.ch/technik/projekte/eit/Fruehling2016/MuelZum/html/parametric__equalizer__example_8c_source.html)
arm_q15_to_float(modulation->data, modulation_f32, AUDIO_BLOCK_SAMPLES);
arm_biquad_cascade_df1_f32(&filter, modulation_f32, modulation_f32, AUDIO_BLOCK_SAMPLES);
bp = block->data;
mp = modulation_f32;
for (uint16_t i = 0; i < AUDIO_BLOCK_SAMPLES; i++)
{
// write data into circular buffer
if (_circ_idx >= _delay_length)
_circ_idx = 0;
_delayline[_circ_idx] = *bp;
// Calculate modulation index as a float, for interpolation later.
// The index is located around the half of the delay length multiplied by the current amount of the modulator
mod_idx = *mp * float(_delay_length >> 1);
mod_fraction = modff(mod_idx, &mod_number);
#ifdef INTERPOLATE_MODE
// Generate a an array with the size of INTERPOLATION_WINDOW_SIZE of x/y values around mod_idx for interpolation
uint8_t c;
int16_t c_mod_idx = _circ_idx - int(round(mod_idx)); // This is the pointer to the value in the circular buffer at the current modulation index
for (j = ~(INTERPOLATION_WINDOW_SIZE >> 1) | 0x01, c = 0; j <= INTERPOLATION_WINDOW_SIZE >> 1; j++, c++) // only another way to say: from -INTERPOLATION_WINDOW_SIZE/2 to INTERPOLATION_WINDOW_SIZE/2
{
int16_t jc_mod_idx = (c_mod_idx + j) % _delay_length; // The modulation index pointer plus the value of the current window pointer
if (jc_mod_idx < 0)
y[c] = float(_delayline[_delay_length + jc_mod_idx]);
else
y[c] = float(_delayline[jc_mod_idx]);
x[c] = float(j);
}
*bp = int(round(s.value(mod_fraction)));
#else
// Simple interpolation
int16_t c_mod_idx = (_circ_idx - int(round(mod_idx))) % _delay_length;
float value1, value2;
if (c_mod_idx < 0)
{
value1 = _delayline[_delay_length + c_mod_idx - 1];
value2 = _delayline[_delay_length + c_mod_idx];
}
else
{
value1 = _delayline[c_mod_idx - 1];
value2 = _delayline[c_mod_idx];
}
*bp = mod_fraction * value1 + (1.0 - mod_fraction) * value2;
#endif
bp++; // next audio data
mp++; // next modulation data
_circ_idx++; // next circular buffer index
}
}
if (modulation)
release(modulation);
if (block)
{
transmit(block, 0);
release(block);
}
}
void AudioEffectModulatedDelay::setDelay(float milliseconds)
{
_delay_length = min(AUDIO_SAMPLE_RATE * milliseconds / 500, _max_delay_length);
}
void AudioEffectModulatedDelay::calcModFilterCoeff(float32_t cFrq, float32_t gain, float32_t width)
{
/* Calculate intermediate values */
float32_t A = sqrt(pow(10, gain / 20.0f));
float32_t w0 = 2.0f * PI * cFrq / ((float32_t)AUDIO_SAMPLE_RATE_EXACT);
float32_t cosw0 = cos(w0);
float32_t sinw0 = sin(w0);
float32_t alpha = sinw0 / (2.0f * width);
/* Calculate coefficients */
float32_t b0 = 1.0f + alpha * A;
float32_t b1 = -2.0f * cosw0;
float32_t b2 = 1.0f - alpha * A;
float32_t a0 = 1.0f + alpha / A;
float32_t a1 = -2.0f * cosw0;
float32_t a2 = 1.0f - alpha / A;
/* Normalize so a0 = 1 */
filter_coeffs[0] = b0 / a0;
filter_coeffs[1] = b1 / a0;
filter_coeffs[2] = b2 / a0;
filter_coeffs[3] = -a1 / a0;
filter_coeffs[4] = -a2 / a0;
}
void AudioEffectModulatedDelay::setModFilter(float cFrq, float gain, float width)
{
calcModFilterCoeff(cFrq, gain, width);
}