You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
MicroMDAEPiano/MicroMDAEPiano.ino

764 lines
23 KiB

/*
MicroMDAEPiano
MicroMDAEPiano is a port of the MDA-EPiano sound engine
(https://sourceforge.net/projects/mda-vst/) for the Teensy-3.5/3.6 with audio shield.
(c)2019 H. Wirtz <wirtz@parasitstudio.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <Audio.h>
#include <Wire.h>
#include <SPI.h>
#include <MIDI.h>
#include <EEPROM.h>
#include "EEPROMAnything.h"
#include "mdaEPiano.h"
#include "effect_modulated_delay.h"
#ifdef USE_XFADE_DATA
#include "mdaEPianoDataXfade.h"
#else
#include "mdaEPianoData.h"
#endif
#include "UI.hpp"
#include "midi_devices.hpp"
#include "config.h"
//*************************************************************************************************
//* GLOBAL VARIABLES
//*************************************************************************************************
// Audio configuration
AudioPlayQueue queue_r;
AudioPlayQueue queue_l;
AudioAnalyzePeak peak_r;
AudioAnalyzePeak peak_l;
AudioEffectFreeverb freeverb_r;
AudioEffectFreeverb freeverb_l;
AudioMixer4 mixer_r;
AudioMixer4 mixer_l;
AudioAmplifier volume_r;
AudioAmplifier volume_l;
AudioAmplifier inverter;
AudioMixer4 modchorus_fbk_mixer_r;
AudioMixer4 modchorus_fbk_mixer_l;
AudioEffectModulatedDelay modchorus_r;
AudioEffectModulatedDelay modchorus_l;
AudioSynthWaveform modulator;
AudioConnection patchCord0(queue_r, peak_r);
AudioConnection patchCord1(queue_l, peak_l);
AudioConnection patchCord2(queue_r, freeverb_r);
AudioConnection patchCord3(queue_l, freeverb_l);
AudioConnection patchCord4(queue_r, 0, modchorus_fbk_mixer_r, 0);
AudioConnection patchCord5(queue_l, 0, modchorus_fbk_mixer_l, 0);
AudioConnection patchCord6(modchorus_fbk_mixer_r, 0, modchorus_r, 0);
AudioConnection patchCord7(modchorus_fbk_mixer_l, 0, modchorus_l, 0);
AudioConnection patchCord8(modchorus_r, 0, modchorus_r, 1);
AudioConnection patchCord9(modchorus_l, 0, modchorus_l, 1);
AudioConnection patchCord10(modulator, 0, modchorus_r, 1);
AudioConnection patchCord11(modulator, inverter);
AudioConnection patchCord12(inverter, 0, modchorus_l, 1);
AudioConnection patchCord13(queue_r, 0, mixer_r, 0);
AudioConnection patchCord14(queue_l, 0, mixer_l, 0);
AudioConnection patchCord15(modchorus_r, 0, mixer_r, 2);
AudioConnection patchCord16(modchorus_l, 0, mixer_l, 2);
AudioConnection patchCord17(freeverb_r, 0, mixer_r, 1);
AudioConnection patchCord18(freeverb_l, 0, mixer_l, 1);
AudioConnection patchCord19(mixer_r, volume_r);
AudioConnection patchCord20(mixer_l, volume_l);
#ifdef USB_AUDIO
AudioOutputUSB usb1;
AudioConnection patchCord21(volume_r, 0, usb1, 0);
AudioConnection patchCord22(volume_l, 0, usb1, 1);
#endif
AudioOutputI2S i2s1;
AudioConnection patchCord23(volume_r, 0, i2s1, 0);
AudioConnection patchCord24(volume_l, 0, i2s1, 1);
AudioControlSGTL5000 sgtl5000_1;
// Objects
mdaEPiano* ep;
extern void init_menus(void);
extern int32_t encoder_value[NUM_ENCODER];
extern Bounce but[NUM_ENCODER];
// more variables
uint8_t sound = 1;
uint32_t xrun = 0;
uint32_t overload = 0;
uint32_t peak = 0;
uint16_t render_time_max = 0;
elapsedMicros fill_audio_buffer;
elapsedMillis control_rate;
const uint16_t audio_block_time_us = 1000000 / (SAMPLE_RATE / AUDIO_BLOCK_SAMPLES);
config_t configuration = {
0xffff, // checksum
ENC_DECAY_DEFAULT, // decay
ENC_RELEASE_DEFAULT, // release
ENC_HARDNESS_DEFAULT, // hardness
ENC_TREBLE_DEFAULT, // treble
ENC_STEREO_DEFAULT, // stereo
ENC_TRANSPOSE_DEFAULT, // transpose
ENC_TUNE_DEFAULT, // tune
ENC_DETUNE_DEFAULT, // detune
ENC_VELOCITY_SENSE_DEFAULT, // velocity_sense
ENC_PAN_TREM_FREQUENCY_DEFAULT, // pan_trem_frequency
ENC_PAN_TREM_LEVEL_DEFAULT, // pan_trem_level
ENC_OVERDRIVE_DEFAULT, // overdrive
ENC_COMP_GAIN_DEFAULT, // comp_gain
ENC_COMP_RESPONSE_DEFAULT, // comp_response
ENC_COMP_LIMIT_DEFAULT, // comp_limit
ENC_COMP_THRESHOLD_DEFAULT, // comp_threshold
ENC_COMP_ATTACK_DEFAULT, // comp_attack
ENC_COMP_DECAY_DEFAULT, // comp_decay
ENC_REVERB_ROOMSIZE_DEFAULT, // reverb_roomsize
ENC_REVERB_DAMPING_DEFAULT, // reverb_damping
ENC_REVERB_LEVEL_DEFAULT, // reverb_level
ENC_CHORUS_FREQUENCY_DEFAULT, // chorus_frequency
ENC_CHORUS_DELAY_DEFAULT, // chorus_delay
ENC_CHORUS_INTENSITY_DEFAULT, // chorus_intensity
ENC_CHORUS_FEEDBACK_DEFAULT, // chorus_feedback
ENC_CHORUS_WAVEFORM_DEFAULT, // chorus_waveform
ENC_CHORUS_LEVEL_DEFAULT, // chorus_level
ENC_BASS_LR_LEVEL_DEFAULT, // bass_lr_level
ENC_BASS_MONO_LEVEL_DEFAULT, // bass_mono_level
ENC_EQ_BASS_DEFAULT, // eq_bass
ENC_EQ_TREBLE_DEFAULT, // eq_treble
ENC_LOUDNESS_DEFAULT, // loudness
ENC_MIDI_CHANNEL_DEFAULT, // midi_channel
ENC_MIDI_SOFT_THRU_DEFAULT, // midi_soft_thru
ENC_MAX_POLY_DEFAULT, // max_poly
ENC_MASTER_PAN_DEFAULT // pan
};
uint8_t master_volume = ENC_MASTER_VOLUME_DEFAULT;
int8_t pan = ENC_MASTER_PAN_DEFAULT;
uint8_t eeprom_config_update_flag = 0;
bool eeprom_master_volume_update_flag = false;
elapsedMillis eeprom_master_volume_update_timer;
#ifdef SHOW_CPU_LOAD_MSEC
elapsedMillis cpu_mem_millis;
#endif
#ifdef DEBUG_AUDIO
elapsedMillis debug_audio_timer;
#endif
// Allocate the delay lines for left and right channels
short l_delayline[CHORUS_DELAY_LENGTH_SAMPLES];
short r_delayline[CHORUS_DELAY_LENGTH_SAMPLES];
enum { VOL_MAIN, VOL_REVERB, VOL_CHORUS };
//*************************************************************************************************
//* SETUP FUNCTION
//*************************************************************************************************
void setup()
{
Serial.begin(SERIAL_SPEED);
pinMode(BUT_L_PIN, INPUT_PULLUP);
pinMode(BUT_R_PIN, INPUT_PULLUP);
init_menus();
// Debug output
Serial.println(F("MicroMDAEPiano based on https://sourceforge.net/projects/mda-vst"));
Serial.println(F("(c)2018/2019 H. Wirtz <wirtz@parasitstudio.de>"));
Serial.println(F("https://codeberg.org/dcoredump/MicroMDAEPiano"));
Serial.print(F("Data in PROGMEM: "));
Serial.print(sizeof(epianoDataXfade), DEC);
Serial.println(F(" bytes"));
Serial.println();
Serial.println(F("<setup start>"));
// create EPiano object
ep = new mdaEPiano();
set_complete_configuration();
initial_values_from_eeprom();
setup_midi_devices();
// start audio card
AudioNoInterrupts();
AudioMemory(AUDIO_MEM);
sgtl5000_1.enable();
sgtl5000_1.dacVolumeRamp();
sgtl5000_1.dacVolume(1.0);
sgtl5000_1.unmuteHeadphone();
sgtl5000_1.volume(0.5, 0.5); // Headphone volume
sgtl5000_1.unmuteLineout();
sgtl5000_1.lineOutLevel(SGTL5000_LINEOUT_LEVEL);
sgtl5000_1.audioPostProcessorEnable();
sgtl5000_1.eqSelect(TONE_CONTROLS);
sgtl5000_1.autoVolumeEnable();
sgtl5000_1.enhanceBassEnable();
Serial.println(F("Teensy-Audio-Board enabled."));
#if defined (SHOW_DEBUG) && defined (SHOW_CPU_LOAD_MSEC)
// Initialize processor and memory measurements
AudioProcessorUsageMaxReset();
AudioMemoryUsageMaxReset();
#endif
AudioInterrupts();
Serial.print(F("AUDIO_BLOCK_SAMPLES="));
Serial.print(AUDIO_BLOCK_SAMPLES);
Serial.print(F(" (Time per block="));
Serial.print(audio_block_time_us);
Serial.println(F("us)"));
if (!modchorus_r.begin(r_delayline, CHORUS_DELAY_LENGTH_SAMPLES)) {
Serial.println(F("AudioEffectModulatedDelay - right channel begin failed"));
while (1);
}
if (!modchorus_l.begin(l_delayline, CHORUS_DELAY_LENGTH_SAMPLES)) {
Serial.println(F("AudioEffectModulatedDelay - left channel begin failed"));
while (1);
}
// chorus modulation fixed
modulator.begin(WAVEFORM_MOD);
modulator.phase(0);
modulator.amplitude(1.0);
modulator.offset(0.0);
#ifdef MOD_STEREO
inverter.gain(-1.0); // change phase for second modulated delay (faked stereo mode)
#else
inverter.gain(1.0);
#endif
modchorus_r.offset(15.0);
modchorus_l.offset(15.0);
//modchorus_r.feedback(0.25);
//modchorus_l.feedback(0.25);
modchorus_fbk_mixer_r.gain(0, 0.75);
modchorus_fbk_mixer_l.gain(0, 0.75);
modchorus_fbk_mixer_r.gain(1, 0.25);
modchorus_fbk_mixer_l.gain(1, 0.25);
// internal mixing of original signal(0), reverb(1) and chorus(2)
mixer_r.gain(VOL_MAIN, 0.5);
mixer_l.gain(VOL_MAIN, 0.5);
mixer_r.gain(VOL_REVERB, 0.2);
mixer_l.gain(VOL_REVERB, 0.2);
mixer_r.gain(VOL_CHORUS, 0.2);
mixer_l.gain(VOL_CHORUS, 0.2);
// set master volume
set_master_volume(master_volume);
// init random generator
srand(analogRead(A0));
Serial.println(F("<setup end>"));
#if defined (SHOW_DEBUG) && defined (SHOW_CPU_LOAD_MSEC)
Serial.println();
show_cpu_and_mem_usage();
cpu_mem_millis = 0;
#endif
}
//*************************************************************************************************
//* MAIN LOOP
//*************************************************************************************************
void loop()
{
int16_t* audio_buffer_r; // pointer to AUDIO_BLOCK_SAMPLES * sizeof(int16_t)
int16_t* audio_buffer_l; // pointer to AUDIO_BLOCK_SAMPLES * sizeof(int16_t)
// Main sound calculation
if (queue_r.available() && queue_l.available() && fill_audio_buffer > audio_block_time_us - 10)
{
fill_audio_buffer = 0;
#if defined (SHOW_DEBUG) && defined (SHOW_CPU_LOAD_MSEC)
if (cpu_mem_millis > SHOW_CPU_LOAD_MSEC)
{
show_cpu_and_mem_usage();
cpu_mem_millis = 0;
}
#endif
audio_buffer_r = queue_r.getBuffer();
if (audio_buffer_r == NULL)
{
Serial.println(F("E: audio_buffer_r allocation problems!"));
}
audio_buffer_l = queue_l.getBuffer();
if (audio_buffer_l == NULL)
{
Serial.println(F("E: audio_buffer_l allocation problems!"));
}
elapsedMicros t1;
ep->process(audio_buffer_r, audio_buffer_l);
uint32_t t2 = t1;
if (t2 > audio_block_time_us) // everything greater 2.9ms is a buffer underrun!
xrun++;
if (t2 > render_time_max)
render_time_max = t2;
if (peak_r.available())
{
if (peak_r.read() > 1.00)
peak++;
}
if (peak_l.available())
{
if (peak_l.read() > 1.00)
peak++;
}
queue_r.playBuffer();
queue_l.playBuffer();
}
check_midi_devices();
// CONTROL-RATE-EVENT-HANDLING
if (control_rate > CONTROL_RATE_MS)
{
control_rate = 0;
handle_ui();
if ( eeprom_config_update_flag > 0 && ep->getActiveVoices() == 0) // write only to eeprom when no voice is active
eeprom_config_update();
if (eeprom_master_volume_update_flag == true && eeprom_master_volume_update_timer > STORE_MASTER_VOLUME_MS && ep->getActiveVoices() == 0)
eeprom_master_volume_update();
}
#ifdef DEBUG_AUDIO
if (debug_audio_timer > DEBUG_AUDIO)
{
ep->noteOn(60 + rand() % 108, rand() % 128);
debug_audio_timer = 0;
}
#endif
}
//*************************************************************************************************
//* PROGRAM FUNCTIONS
//*************************************************************************************************
void handleNoteOn(byte inChannel, byte inNumber, byte inVelocity)
{
if (checkMidiChannel(inChannel))
{
ep->noteOn(inNumber + configuration.transpose, inVelocity);
}
}
void handleNoteOff(byte inChannel, byte inNumber, byte inVelocity)
{
if (checkMidiChannel(inChannel))
{
ep->noteOn(inNumber + configuration.transpose, 0);
}
}
void handleControlChange(byte inChannel, byte inData1, byte inData2)
{
if (checkMidiChannel(inChannel))
{
switch (inData1)
{
case 10: // Panorama
configuration.pan = mapfloat(float(inData2), 0, 127, 0.0, 1.0);
break;
case 91: // Reverb level
set_reverb_level(map(inData2, 0, 127, ENC_REVERB_LEVEL_MIN, ENC_REVERB_LEVEL_MAX));
break;
case 92: // Tremolo level (same as modwheel)
inData1 = 1; // now it's modwheel and can be processd by ep->processMidiController :-)
break;
case 93: // Chorus level
set_chorus_level(map(inData2, 0, 127, ENC_CHORUS_LEVEL_MIN, ENC_CHORUS_LEVEL_MAX));
break;
case 94: // Detune level
ep->setDetune(mapfloat(float(inData2), 0, 127, 0.0, 1.0));
break;
default:
ep->processMidiController(inData1, inData2);
break;
}
}
}
void handleAfterTouch(byte inChannel, byte inPressure)
{
;
}
void handlePitchBend(byte inChannel, int inPitch)
{
;
}
void handleProgramChange(byte inChannel, byte inProgram)
{
if (checkMidiChannel(inChannel))
{
sound = inProgram;
load_sound();
if (menu_system.get_currentScreen() == &load_sound_screen)
menu_system.update();
}
}
void handleSystemExclusive(byte * data, uint len)
{
;
}
void handleSystemExclusiveChunk(const byte * data, uint16_t len, bool last)
{
;
}
void handleTimeCodeQuarterFrame(byte data)
{
;
}
void handleAfterTouchPoly(byte inChannel, byte inNumber, byte inVelocity)
{
;
}
void handleSongSelect(byte inSong)
{
;
}
void handleTuneRequest(void)
{
;
}
void handleClock(void)
{
;
}
void handleStart(void)
{
;
}
void handleContinue(void)
{
;
}
void handleStop(void)
{
;
}
void handleActiveSensing(void)
{
;
}
void handleSystemReset(void)
{
;
}
void handleRealTimeSystem(void)
{
;
}
bool checkMidiChannel(byte inChannel)
{
// check for MIDI channel
if (configuration.midi_channel == MIDI_CHANNEL_OMNI)
{
return (true);
}
else if (inChannel != configuration.midi_channel)
{
#ifdef SHOW_DEBUG
Serial.print(F("Ignoring MIDI data on channel "));
Serial.print(inChannel);
Serial.print(F("(listening on "));
Serial.print(configuration.midi_channel);
Serial.println(F(")"));
#endif
return (false);
}
return (true);
}
void set_master_volume(uint8_t value)
{
//configuration.pan = 0; // BAD HACK!
uint16_t tmp = map(value, ENC_MASTER_VOLUME_MIN, ENC_MASTER_VOLUME_MAX, 0, 0x3ff);
float tmp2 = mapfloat(configuration.pan, ENC_MASTER_PAN_MIN, ENC_MASTER_PAN_MAX, 0.0, 1.0);
float tmp3 = (float)(tmp * (tmp + 2)) / (float)(1 << 20);
#ifdef SHOW_DEBUG
Serial.print(F("Setting volume: VOL="));
Serial.print(value, DEC);
Serial.print(F("["));
Serial.print(tmp3, 3);
Serial.print(F("] PAN="));
Serial.print(configuration.pan, DEC);
Serial.print(F("["));
Serial.print(tmp2, 3);
Serial.print(F("] "));
Serial.print(tmp3 * sinf(tmp2 * PI / 2), 3);
Serial.print(F("/"));
Serial.println(tmp3 * cosf(tmp2 * PI / 2), 3);
#endif
// float v = (float)(a * (a + 2))/(float)(1 << 20); // (pseudo-) logarithmic curve for volume control
// http://files.csound-tutorial.net/floss_manual/Release03/Cs_FM_03_ScrapBook/b-panning-and-spatialization.html
volume_r.gain(tmp3 * sinf(tmp2 * PI / 2));
volume_l.gain(tmp3 * cosf(tmp2 * PI / 2));
eeprom_master_volume_update_flag = true;
eeprom_master_volume_update_timer = 0;
if (menu_system.get_currentScreen() == &master_volume_screen)
menu_system.update();
}
/******************************************************************************
EEPROM HELPER
******************************************************************************/
void config_from_eeprom(void)
{
uint32_t checksum;
config_t tmp_conf;
EEPROM_readAnything(EEPROM_CONFIGURATIONS + sizeof(config_t) * (sound - 1), tmp_conf);
checksum = crc32((byte*)&tmp_conf + 4, sizeof(tmp_conf) - 4);
#ifdef SHOW_DEBUG
Serial.print(F("Reading sound "));
Serial.print(sound, DEC);
Serial.print(F(" from 0x"));
Serial.print(EEPROM_CONFIGURATIONS + sizeof(config_t) * (sound - 1), HEX);
Serial.print(F(" EEPROM checksum: 0x"));
Serial.print(tmp_conf.checksum, HEX);
Serial.print(F(" / 0x"));
Serial.print(checksum, HEX);
#endif
if (checksum == tmp_conf.checksum)
{
EEPROM_readAnything(EEPROM_CONFIGURATIONS + sizeof(config_t) * (sound - 1), configuration);
#ifdef SHOW_DEBUG
Serial.println(F(" - OK"));
#endif
}
else
{
#ifdef SHOW_DEBUG
Serial.println(F(" - mismatch -> loading initial configuration."));
#endif
EEPROM.update(EEPROM_SOUND, sound);
}
set_complete_configuration();
#ifdef SHOW_DEBUG
show_sound();
#endif
}
void initial_values_from_eeprom(void)
{
master_volume = EEPROM.read(EEPROM_MASTER_VOLUME);
sound = EEPROM.read(EEPROM_SOUND);
load_sound();
}
void eeprom_config_write(uint8_t value)
{
eeprom_config_update_flag = value;
}
void eeprom_config_update(void)
{
configuration.checksum = crc32((byte*)&configuration + 4, sizeof(configuration) - 4);
Serial.print(F("Updating EEPROM configuration for sound "));
Serial.print(eeprom_config_update_flag, DEC);
Serial.print(F(" with checksum 0x"));
Serial.print(configuration.checksum, HEX);
Serial.print(F(" at 0x"));
Serial.println(EEPROM_CONFIGURATIONS + sizeof(config_t) * (eeprom_config_update_flag - 1), HEX);
EEPROM_writeAnything(EEPROM_CONFIGURATIONS + sizeof(config_t) * (eeprom_config_update_flag - 1), configuration);
eeprom_config_update_flag = 0;
EEPROM.update(EEPROM_SOUND, sound);
}
void eeprom_master_volume_write(void)
{
eeprom_master_volume_update_flag = true;
}
void eeprom_master_volume_update(void)
{
eeprom_master_volume_update_flag = false;
EEPROM.update(EEPROM_MASTER_VOLUME, master_volume);
Serial.println(F("Updating EEPROM with master_volume"));
}
uint32_t crc32(byte * calc_start, uint16_t calc_bytes) // base code from https://www.arduino.cc/en/Tutorial/EEPROMCrc
{
const uint32_t crc_table[16] =
{
0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac,
0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c,
0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c,
0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c
};
uint32_t crc = ~0L;
for (byte* index = calc_start ; index < (calc_start + calc_bytes) ; ++index)
{
crc = crc_table[(crc ^ *index) & 0x0f] ^ (crc >> 4);
crc = crc_table[(crc ^ (*index >> 4)) & 0x0f] ^ (crc >> 4);
crc = ~crc;
}
return (crc);
}
//*************************************************************************************************
//* DEBUG FUNCTIONS
//*************************************************************************************************
#if defined (SHOW_DEBUG) && defined (SHOW_CPU_LOAD_MSEC)
void show_cpu_and_mem_usage(void)
{
Serial.print(F("CPU: "));
Serial.print(AudioProcessorUsage(), DEC);
Serial.print(F(" CPU MAX: "));
Serial.print(AudioProcessorUsageMax(), DEC);
Serial.print(F(" MEM: "));
Serial.print(AudioMemoryUsage(), DEC);
Serial.print(F(" MEM MAX: "));
Serial.print(AudioMemoryUsageMax(), DEC);
Serial.print(F(" RENDER_TIME_MAX: "));
Serial.print(render_time_max, DEC);
Serial.print(F(" XRUN: "));
Serial.print(xrun, DEC);
Serial.print(F(" OVERLOAD: "));
Serial.print(overload, DEC);
Serial.print(F(" PEAK: "));
Serial.print(peak, DEC);
Serial.print(F(" ACTIVE_VOICES: "));
Serial.print(ep->getActiveVoices(), DEC);
Serial.println();
AudioProcessorUsageMaxReset();
AudioMemoryUsageMaxReset();
render_time_max = 0;
}
void show_sound(void)
{
Serial.println(F("======SHOW=SOUND=CONFIGURATION======"));
Serial.print(F("Master Volume: "));
Serial.println(master_volume, DEC);
Serial.print(F("Sound: "));
Serial.println(sound, DEC);
Serial.print(F("Checksum: 0x"));
Serial.println(configuration.checksum, HEX);
Serial.print(F("Decay: "));
Serial.println(configuration.decay, DEC);
Serial.print(F("Release: "));
Serial.println(configuration.release, DEC);
Serial.print(F("Hardness: "));
Serial.println(configuration.hardness, DEC);
Serial.print(F("Treble: "));
Serial.println(configuration.treble, DEC);
Serial.print(F("Stereo: "));
Serial.println(configuration.stereo, DEC);
Serial.print(F("Transpose: "));
Serial.println(configuration.transpose, DEC);
Serial.print(F("Tune: "));
Serial.println(configuration.tune, DEC);
Serial.print(F("Detune: "));
Serial.println(configuration.detune, DEC);
Serial.print(F("Velocity Sense: "));
Serial.println(configuration.velocity_sense, DEC);
Serial.print(F("Pan Tremolo Frequency: "));
Serial.println(configuration.pan_trem_frequency, DEC);
Serial.print(F("Pan Tremolo Level: "));
Serial.println(configuration.pan_trem_level, DEC);
Serial.print(F("Ovedrive: "));
Serial.println(configuration.overdrive, DEC);
Serial.print(F("Compressor Gain: "));
Serial.println(configuration.comp_gain, DEC);
Serial.print(F("Compressor Respone: "));
Serial.println(configuration.comp_response, DEC);
Serial.print(F("Compressor Limit: "));
Serial.println(configuration.comp_limit, DEC);
Serial.print(F("Compressor Threshold: "));
Serial.println(configuration.comp_threshold, DEC);
Serial.print(F("Compressor Attack: "));
Serial.println(configuration.comp_attack, DEC);
Serial.print(F("Compressor Decay: "));
Serial.println(configuration.comp_decay, DEC);
Serial.print(F("Reverb Roomsize: "));
Serial.println(configuration.reverb_roomsize, DEC);
Serial.print(F("Reverb Damping: "));
Serial.println(configuration.reverb_damping, DEC);
Serial.print(F("Reverb Level: "));
Serial.println(configuration.reverb_level, DEC);
Serial.print(F("Chorus Frequency: "));
Serial.println(configuration.chorus_frequency, DEC);
Serial.print(F("Chorus Delay: "));
Serial.println(configuration.chorus_delay, DEC);
Serial.print(F("Chorus Intensity: "));
Serial.println(configuration.chorus_intensity, DEC);
Serial.print(F("Chorus Feedback: "));
Serial.println(configuration.chorus_feedback, DEC);
Serial.print(F("Chorus Waveform: "));
Serial.println(configuration.chorus_waveform, DEC);
Serial.print(F("Chorus Level: "));
Serial.println(configuration.chorus_level, DEC);
Serial.print(F("Bass L/R Level: "));
Serial.println(configuration.bass_lr_level, DEC);
Serial.print(F("Bass Mono Level: "));
Serial.println(configuration.bass_mono_level, DEC);
Serial.print(F("EQ Bass: "));
Serial.println(configuration.eq_bass, DEC);
Serial.print(F("EQ Treble: "));
Serial.println(configuration.eq_treble, DEC);
Serial.print(F("Loudness: "));
Serial.println(configuration.loudness, DEC);
Serial.print(F("MIDI Channel: "));
Serial.println(configuration.midi_channel, DEC);
Serial.print(F("MIDI Soft-Thru: "));
Serial.println(configuration.midi_soft_thru, DEC);
Serial.print(F("Maximum Polyphony: "));
Serial.println(configuration.max_poly, DEC);
Serial.print(F("Panorama: "));
Serial.println(configuration.pan, DEC);
Serial.println(F("======END=SOUND=CONFIGURATION======="));
}
#endif