/* Audio Library for Teensy 3.X Copyright (c) 2014, Paul Stoffregen, paul@pjrc.com Development of this audio library was funded by PJRC.COM, LLC by sales of Teensy and Audio Adaptor boards. Please support PJRC's efforts to develop open source software by purchasing Teensy or other PJRC products. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice, development funding notice, and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /* Extension for setting the waveform while running by H. Wirtz */ #ifndef synth_waveform_extended_h_ #define synth_waveform_extended_h_ #include #include "AudioStream.h" #include "arm_math.h" // waveforms.c extern "C" { extern const int16_t AudioWaveformSine[257]; } #define WAVEFORM_SINE 0 #define WAVEFORM_SAWTOOTH 1 #define WAVEFORM_SQUARE 2 #define WAVEFORM_TRIANGLE 3 #define WAVEFORM_ARBITRARY 4 #define WAVEFORM_PULSE 5 #define WAVEFORM_SAWTOOTH_REVERSE 6 #define WAVEFORM_SAMPLE_HOLD 7 #define WAVEFORM_TRIANGLE_VARIABLE 8 class AudioSynthWaveformExtended : public AudioStream { public: AudioSynthWaveformExtended(void) : AudioStream(0, NULL), phase_accumulator(0), phase_increment(0), phase_offset(0), magnitude(0), pulse_width(0x40000000), arbdata(NULL), sample(0), tone_type(WAVEFORM_SINE), tone_offset(0) { } void frequency(float freq) { if (freq < 0.0) { freq = 0.0; } else if (freq > AUDIO_SAMPLE_RATE_EXACT / 2) { freq = AUDIO_SAMPLE_RATE_EXACT / 2; } phase_increment = freq * (4294967296.0 / AUDIO_SAMPLE_RATE_EXACT); if (phase_increment > 0x7FFE0000u) phase_increment = 0x7FFE0000; } void phase(float angle) { if (angle < 0.0) { angle = 0.0; } else if (angle > 360.0) { angle = angle - 360.0; if (angle >= 360.0) return; } phase_offset = angle * (4294967296.0 / 360.0); } void amplitude(float n) { // 0 to 1.0 if (n < 0) { n = 0; } else if (n > 1.0) { n = 1.0; } magnitude = n * 65536.0; } void offset(float n) { if (n < -1.0) { n = -1.0; } else if (n > 1.0) { n = 1.0; } tone_offset = n * 32767.0; } void pulseWidth(float n) { // 0.0 to 1.0 if (n < 0) { n = 0; } else if (n > 1.0) { n = 1.0; } pulse_width = n * 4294967296.0; } void waveform(short t_type) { phase_offset = 0; tone_type = t_type; } void begin(short t_type) { phase_offset = 0; tone_type = t_type; } void begin(float t_amp, float t_freq, short t_type) { amplitude(t_amp); frequency(t_freq); phase_offset = 0; tone_type = t_type; } void arbitraryWaveform(const int16_t *data, float maxFreq) { arbdata = data; } virtual void update(void); private: uint32_t phase_accumulator; uint32_t phase_increment; uint32_t phase_offset; int32_t magnitude; uint32_t pulse_width; const int16_t *arbdata; int16_t sample; // for WAVEFORM_SAMPLE_HOLD short tone_type; int16_t tone_offset; }; class AudioSynthWaveformExtendedModulated : public AudioStream { public: AudioSynthWaveformExtendedModulated(void) : AudioStream(2, inputQueueArray), phase_accumulator(0), phase_increment(0), modulation_factor(32768), magnitude(0), arbdata(NULL), sample(0), tone_offset(0), tone_type(WAVEFORM_SINE), modulation_type(0) { } void frequency(float freq) { if (freq < 0.0) { freq = 0.0; } else if (freq > AUDIO_SAMPLE_RATE_EXACT / 2) { freq = AUDIO_SAMPLE_RATE_EXACT / 2; } phase_increment = freq * (4294967296.0 / AUDIO_SAMPLE_RATE_EXACT); if (phase_increment > 0x7FFE0000u) phase_increment = 0x7FFE0000; } void amplitude(float n) { // 0 to 1.0 if (n < 0) { n = 0; } else if (n > 1.0) { n = 1.0; } magnitude = n * 65536.0; } void offset(float n) { if (n < -1.0) { n = -1.0; } else if (n > 1.0) { n = 1.0; } tone_offset = n * 32767.0; } void waveform(short t_type) { tone_type = t_type; } void begin(short t_type) { tone_type = t_type; } void begin(float t_amp, float t_freq, short t_type) { amplitude(t_amp); frequency(t_freq); tone_type = t_type; } void arbitraryWaveform(const int16_t *data, float maxFreq) { arbdata = data; } void frequencyModulation(float octaves) { if (octaves > 12.0) { octaves = 12.0; } else if (octaves < 0.1) { octaves = 0.1; } modulation_factor = octaves * 4096.0; modulation_type = 0; } void phaseModulation(float degrees) { if (degrees > 9000.0) { degrees = 9000.0; } else if (degrees < 30.0) { degrees = 30.0; } modulation_factor = degrees * (65536.0 / 180.0); modulation_type = 1; } virtual void update(void); private: audio_block_t *inputQueueArray[2]; uint32_t phase_accumulator; uint32_t phase_increment; uint32_t modulation_factor; int32_t magnitude; const int16_t *arbdata; uint32_t phasedata[AUDIO_BLOCK_SAMPLES]; int16_t sample; // for WAVEFORM_SAMPLE_HOLD int16_t tone_offset; uint8_t tone_type; uint8_t modulation_type; }; #endif