/* Audio Library for Teensy 3.X Copyright (c) 2014, Pete (El Supremo) Copyright (c) 2019, Holger Wirtz Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include #include #include "arm_math.h" #include "effect_modulated_delay.h" #include "config.h" #include "DCBlock.h" #include "limits.h" extern config_t configuration; /******************************************************************/ // Based on; A u d i o E f f e c t D e l a y // Written by Pete (El Supremo) Jan 2014 // 140529 - change to handle mono stream - change modify() to voices() // 140219 - correct storage class (not static) // 190527 - added modulation input (by Holger Wirtz) boolean AudioEffectModulatedDelay::begin(short *delayline, int d_length) { #if 0 Serial.print(F("AudioEffectModulatedDelay.begin(Chorus delay line length = ")); Serial.print(d_length); Serial.println(F(")")); #endif _delayline = NULL; _delay_length = 0; _delay_offset = 0.0; _cb_index = 0; if (delayline == NULL) { return (false); } if (d_length < 10) { return (false); } _delayline = delayline; _delay_length = d_length; set_modulator_filter_coeffs(); modulator_filter_data = {1, modulator_filter_state, modulator_filter_coeffs}; dcBlock = new DCBlock(); return (true); } void AudioEffectModulatedDelay::set_modulator_filter_coeffs(void) { // modulator filter // "IOWA Hills IIR Filter Designer 6.5", http://www.iowahills.com/8DownloadPage.html // Example: https://web.fhnw.ch/technik/projekte/eit/Fruehling2016/MuelZum/html/parametric_equalizer_example_8c-example.html // Coeeficients calculated with https://arachnoid.com/BiQuadDesigner/index.html // SR = 44110, Fc = 400 Hz; Q=0.707 modulator_filter_coeffs[0] = 7.80321719e-4; // b0 modulator_filter_coeffs[1] = 0.00156064; // b1 modulator_filter_coeffs[2] = 7.80321719e-4; // b2 modulator_filter_coeffs[3] = 1.91943335; // -a1 modulator_filter_coeffs[4] = -0.92255463; // -a2 } void AudioEffectModulatedDelay::update(void) { audio_block_t *block; audio_block_t *modulation; if (_delayline == NULL) return; block = receiveWritable(0); modulation = receiveReadOnly(1); if (block && modulation) { int16_t *bp; int16_t cb_mod_index_neighbor; float *mp; float mod_index; float mod_number; float mod_fraction; float modulation_f32[AUDIO_BLOCK_SAMPLES]; bp = block->data; arm_q15_to_float(modulation->data, modulation_f32, AUDIO_BLOCK_SAMPLES); arm_biquad_cascade_df1_f32(&modulator_filter_data, modulation_f32, modulation_f32, AUDIO_BLOCK_SAMPLES); mp = modulation_f32; for (uint16_t i = 0; i < AUDIO_BLOCK_SAMPLES; i++) { // write data into circular buffer (delayline) if (_cb_index >= _delay_length) _cb_index = 0; _delayline[_cb_index] = *bp; // Calculate the modulation-index as a floating point number for interpolation mod_index = *mp * (1 - MODULATION_MAX_FACTOR) * _delay_length; // "(1 - MODULATION_MAX_FACTOR) * _delay_length" means: maximum bytes of modulation allowed by given delay length mod_fraction = modff(mod_index, &mod_number); // split float of mod_index into integer (= mod_number) and fraction part // calculate modulation index into circular buffer cb_mod_index = (_cb_index - (_delay_offset + mod_number)); /* if (cb_mod_index >= _delay_length) cb_mod_index -= _delay_length; */ if (cb_mod_index < 0) // check for negative offsets and correct them cb_mod_index += _delay_length; if (*mp < 0.0) { if (cb_mod_index == 0) cb_mod_index_neighbor = _delay_length; else cb_mod_index_neighbor = cb_mod_index - 1; *bp = round(float(_delayline[cb_mod_index]) * mod_fraction + float(_delayline[cb_mod_index_neighbor]) * (1.0 - mod_fraction)); } else { if (cb_mod_index == _delay_length) cb_mod_index_neighbor = 0; else cb_mod_index_neighbor = cb_mod_index + 1; *bp = round(float(_delayline[cb_mod_index_neighbor]) * mod_fraction + float(_delayline[cb_mod_index]) * (1.0 - mod_fraction)); } // simple Test for DC filter float bp_f=*bp/SHRT_MAX; dcBlock->tick(&bp_f, 0.01f); *bp=bp_f*SHRT_MAX; // push the pointers forward bp++; // next audio data mp++; // next modulation data _cb_index++; // next circular buffer index } } if (modulation) release(modulation); if (block) { transmit(block, 0); release(block); } } float AudioEffectModulatedDelay::offset(float offset_value) // in ms { uint16_t offset_frames = (offset_value / 1000) * AUDIO_SAMPLE_RATE; if (offset_frames > _delay_length * MODULATION_MAX_FACTOR) _delay_offset = _delay_length * MODULATION_MAX_FACTOR; else if (offset_frames <= _delay_length * (1 - MODULATION_MAX_FACTOR)) _delay_offset = _delay_length * (1 - MODULATION_MAX_FACTOR); else _delay_offset = offset_frames; return (offset_frames / AUDIO_SAMPLE_RATE * 1000); }