You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
MicroDexed/dexed.cpp

811 lines
22 KiB

/**
Copyright (c) 2016-2017 Holger Wirtz <dcoredump@googlemail.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "synth.h"
#include "dexed.h"
#include "EngineMkI.h"
#include "EngineOpl.h"
#include "fm_core.h"
#include "exp2.h"
#include "sin.h"
#include "freqlut.h"
#include "controllers.h"
#include "trace.h"
#include <unistd.h>
#include <limits.h>
Dexed::Dexed(uint8_t rate)
{
uint8_t i;
Exp2::init();
Tanh::init();
Sin::init();
Freqlut::init(rate);
Lfo::init(rate);
PitchEnv::init(rate);
Env::init_sr(rate);
engineMkI = new EngineMkI;
engineOpl = new EngineOpl;
engineMsfa = new FmCore;
/*
if(!(engineMkI=new (std::nothrow) EngineMkI))
TRACE("Cannot not create engine EngineMkI");
if(!(engineOpl=new (std::nothrow) EngineOpl))
{
delete(engineMkI);
TRACE("Cannot not create engine EngineOpl");
}
if(!(engineMsfa=new (std::nothrow) FmCore))
{
delete(engineMkI);
delete(engineOpl);
TRACE("Cannot create engine FmCore");
}
*/
for (i = 0; i < MAX_ACTIVE_NOTES; i++) {
voices[i].dx7_note = new Dx7Note;
voices[i].keydown = false;
voices[i].sustained = false;
voices[i].live = false;
}
/* for(i=0;i<sizeof(data);++i)
{
data_float[i]=static_cast<float>(data[i]);
}*/
max_notes = 16;
currentNote = 0;
controllers.values_[kControllerPitch] = 0x2000;
controllers.values_[kControllerPitchRange] = 0;
controllers.values_[kControllerPitchStep] = 0;
controllers.modwheel_cc = 0;
controllers.foot_cc = 0;
controllers.breath_cc = 0;
controllers.aftertouch_cc = 0;
controllers.masterTune = 0;
controllers.opSwitch = 0x3f; // enable all operators
//controllers.opSwitch=0x00;
bufsize_ = 256;
outbuf_ = new float[bufsize_];
lfo.reset(data + 137);
setMonoMode(false);
sustain = false;
extra_buf_size_ = 0;
memset(&voiceStatus, 0, sizeof(VoiceStatus));
setEngineType(DEXED_ENGINE_MODERN);
}
Dexed::~Dexed()
{
delete [] outbuf_;
currentNote = -1;
for (uint8_t note = 0; note < MAX_ACTIVE_NOTES; ++note)
delete voices[note].dx7_note;
delete(engineMsfa);
delete(engineOpl);
delete(engineMkI);
}
void Dexed::activate(void)
{
panic();
controllers.values_[kControllerPitchRange] = data[155];
controllers.values_[kControllerPitchStep] = data[156];
}
void Dexed::deactivate(void)
{
; // nothing to do...
}
void Dexed::GetSamples(uint16_t n_samples, int16_t* buffer)
{
uint16_t i;
if (refreshVoice) {
for (i = 0; i < max_notes; i++) {
if ( voices[i].live )
voices[i].dx7_note->update(data, voices[i].midi_note, voices[i].velocity);
}
lfo.reset(data + 137);
refreshVoice = false;
}
// flush first events
for (i = 0; i < n_samples && i < extra_buf_size_; i++) {
buffer[i] = extra_buf_[i];
}
// remaining buffer is still to be processed
if (extra_buf_size_ > n_samples) {
for (uint16_t j = 0; j < extra_buf_size_ - n_samples; j++) {
extra_buf_[j] = extra_buf_[j + n_samples];
}
extra_buf_size_ -= n_samples;
}
else
{
for (; i < n_samples; i += _N_) {
AlignedBuf<int32_t, _N_> audiobuf;
int16_t sumbuf[_N_];
for (uint8_t j = 0; j < _N_; ++j) {
audiobuf.get()[j] = 0;
//sumbuf[j] = 0.0;
sumbuf[j] = 0;
}
int32_t lfovalue = lfo.getsample();
int32_t lfodelay = lfo.getdelay();
for (uint8_t note = 0; note < max_notes; ++note) {
if (voices[note].live) {
voices[note].dx7_note->compute(audiobuf.get(), lfovalue, lfodelay, &controllers);
for (uint8_t j = 0; j < _N_; ++j) {
int32_t val = audiobuf.get()[j];
//val = val >> 4;
int32_t clip_val = val < -(1 << 24) ? 0x8000 : val >= (1 << 24) ? 0x7fff : val >> 9;
/* float f = static_cast<float>(clip_val >> 1) / static_cast<float>(0x8000);
if (f > 1) f = 1;
if (f < -1) f = -1;
sumbuf[j] += f;*/
sumbuf[j] += clip_val;
audiobuf.get()[j] = 0;
}
}
}
uint16_t jmax = n_samples - i;
for (uint8_t j = 0; j < _N_; ++j) {
if (j < jmax)
{
//buffer[i + j] = static_cast<int16_t>(sumbuf[j]*0x8000);
buffer[i + j] = sumbuf[j];
Serial.println(buffer[i + j], DEC);
}
else
extra_buf_[j - jmax] = sumbuf[j];
}
}
extra_buf_size_ = i - n_samples;
}
if (++_k_rate_counter % 32 && !monoMode)
{
uint8_t op_carrier = controllers.core->get_carrier_operators(data[134]); // look for carriers
for (i = 0; i < max_notes; i++)
{
if (voices[i].live == true)
{
uint8_t op_amp = 0;
uint8_t op_carrier_num = 0;
voices[i].dx7_note->peekVoiceStatus(voiceStatus);
for (uint8_t op = 0; op < 6; op++)
{
uint8_t op_bit = static_cast<uint8_t>(pow(2, op));
if ((op_carrier & op_bit) > 0)
{
// this voice is a carrier!
op_carrier_num++;
//TRACE("Voice[%2d] OP [%d] amp=%ld,amp_step=%d,pitch_step=%d",i,op,voiceStatus.amp[op],voiceStatus.ampStep[op],voiceStatus.pitchStep);
if (voiceStatus.amp[op] <= 1069 && voiceStatus.ampStep[op] == 4) // this voice produces no audio output
op_amp++;
}
}
if (op_amp == op_carrier_num)
{
// all carrier-operators are silent -> disable the voice
voices[i].live = false;
voices[i].sustained = false;
voices[i].keydown = false;
TRACE("Shutted down Voice[%2d]", i);
}
}
// TRACE("Voice[%2d] live=%d keydown=%d",i,voices[i].live,voices[i].keydown);
}
}
}
bool Dexed::ProcessMidiMessage(uint8_t cmd, uint8_t data1, uint8_t data2)
{
switch (cmd & 0xf0) {
case 0x80 :
//TRACE("MIDI keyup event: %d", data1);
keyup(data1);
return (false);
break;
case 0x90 :
//TRACE("MIDI keydown event: %d %d", data1, data2);
keydown(data1, data2);
return (false);
break;
case 0xb0 : {
uint8_t ctrl = data1;
uint8_t value = data2;
switch (ctrl) {
case 1:
//TRACE("MIDI modwheel event: %d %d", ctrl, value);
controllers.modwheel_cc = value;
controllers.refresh();
break;
case 2:
//TRACE("MIDI breath event: %d %d", ctrl, value);
controllers.breath_cc = value;
controllers.refresh();
break;
case 4:
//TRACE("MIDI footsw event: %d %d", ctrl, value);
controllers.foot_cc = value;
controllers.refresh();
break;
case 64:
//TRACE("MIDI sustain event: %d %d", ctrl, value);
sustain = value > 63;
if (!sustain) {
for (uint8_t note = 0; note < max_notes; note++) {
if (voices[note].sustained && !voices[note].keydown) {
voices[note].dx7_note->keyup();
voices[note].sustained = false;
}
}
}
break;
case 120:
//TRACE("MIDI all-sound-off: %d %d", ctrl, value);
panic();
return (true);
break;
case 123:
//TRACE("MIDI all-notes-off: %d %d", ctrl, value);
notes_off();
return (true);
break;
}
break;
}
// case 0xc0 :
// setCurrentProgram(data1);
// break;
// channel aftertouch
case 0xd0 :
//TRACE("MIDI aftertouch 0xd0 event: %d %d", data1);
controllers.aftertouch_cc = data1;
controllers.refresh();
break;
// pitchbend
case 0xe0 :
//TRACE("MIDI pitchbend 0xe0 event: %d %d", data1, data2);
controllers.values_[kControllerPitch] = data1 | (data2 << 7);
break;
default:
//TRACE("MIDI event unknown: cmd=%d, val1=%d, val2=%d", cmd, data1, data2);
break;
}
TRACE("Bye");
return (false);
}
void Dexed::keydown(uint8_t pitch, uint8_t velo) {
TRACE("Hi");
TRACE("pitch=%d, velo=%d\n", pitch, velo);
if ( velo == 0 ) {
keyup(pitch);
return;
}
pitch += data[144] - 24;
uint8_t note = currentNote;
uint8_t keydown_counter = 0;
for (uint8_t i = 0; i < max_notes; i++) {
if (!voices[note].keydown) {
currentNote = (note + 1) % max_notes;
voices[note].midi_note = pitch;
voices[note].velocity = velo;
voices[note].sustained = sustain;
voices[note].keydown = true;
voices[note].dx7_note->init(data, pitch, velo);
if ( data[136] )
voices[note].dx7_note->oscSync();
break;
}
else
keydown_counter++;
note = (note + 1) % max_notes;
}
if (keydown_counter == 0)
lfo.keydown();
if ( monoMode ) {
for (uint8_t i = 0; i < max_notes; i++) {
if ( voices[i].live ) {
// all keys are up, only transfer signal
if ( ! voices[i].keydown ) {
voices[i].live = false;
voices[note].dx7_note->transferSignal(*voices[i].dx7_note);
break;
}
if ( voices[i].midi_note < pitch ) {
voices[i].live = false;
voices[note].dx7_note->transferState(*voices[i].dx7_note);
break;
}
return;
}
}
}
voices[note].live = true;
TRACE("Bye");
}
void Dexed::keyup(uint8_t pitch) {
TRACE("Hi");
TRACE("pitch=%d\n", pitch);
pitch += data[144] - 24;
uint8_t note;
for (note = 0; note < max_notes; ++note) {
if ( voices[note].midi_note == pitch && voices[note].keydown ) {
voices[note].keydown = false;
break;
}
}
// note not found ?
if ( note >= max_notes ) {
TRACE("note-off not found???");
return;
}
if ( monoMode ) {
int8_t highNote = -1;
int8_t target = 0;
for (int8_t i = 0; i < max_notes; i++) {
if ( voices[i].keydown && voices[i].midi_note > highNote ) {
target = i;
highNote = voices[i].midi_note;
}
}
if ( highNote != -1 && voices[note].live ) {
voices[note].live = false;
voices[target].live = true;
voices[target].dx7_note->transferState(*voices[note].dx7_note);
}
}
if ( sustain ) {
voices[note].sustained = true;
} else {
voices[note].dx7_note->keyup();
}
TRACE("Bye");
}
/*
void Dexed::onParam(uint8_t param_num, float param_val)
{
int32_t tune;
if (param_val != data_float[param_num])
{
TRACE("Parameter %d change from %f to %f", param_num, data_float[param_num], param_val);
#ifdef DEBUG
uint8_t tmp = data[param_num];
#endif
_param_change_counter++;
if (param_num == 144 || param_num == 134 || param_num == 172)
panic();
refreshVoice = true;
data[param_num] = static_cast<uint8_t>(param_val);
data_float[param_num] = param_val;
switch (param_num)
{
case 155:
controllers.values_[kControllerPitchRange] = data[param_num];
break;
case 156:
controllers.values_[kControllerPitchStep] = data[param_num];
break;
case 157:
controllers.wheel.setRange(data[param_num]);
controllers.wheel.setTarget(data[param_num + 1]);
controllers.refresh();
break;
case 158:
controllers.wheel.setRange(data[param_num - 1]);
controllers.wheel.setTarget(data[param_num]);
controllers.refresh();
break;
case 159:
controllers.foot.setRange(data[param_num]);
controllers.foot.setTarget(data[param_num + 1]);
controllers.refresh();
break;
case 160:
controllers.foot.setRange(data[param_num - 1]);
controllers.foot.setTarget(data[param_num]);
controllers.refresh();
break;
case 161:
controllers.breath.setRange(data[param_num]);
controllers.breath.setTarget(data[param_num + 1]);
controllers.refresh();
break;
case 162:
controllers.breath.setRange(data[param_num - 1]);
controllers.breath.setTarget(data[param_num]);
controllers.refresh();
break;
case 163:
controllers.at.setRange(data[param_num]);
controllers.at.setTarget(data[param_num + 1]);
controllers.refresh();
break;
case 164:
controllers.at.setRange(data[param_num - 1]);
controllers.at.setTarget(data[param_num]);
controllers.refresh();
break;
case 165:
tune = param_val * 0x4000;
controllers.masterTune = (tune << 11) * (1.0 / 12);
break;
case 166:
case 167:
case 168:
case 169:
case 170:
case 171:
controllers.opSwitch = (data[166] << 5) | (data[167] << 4) | (data[168] << 3) | (data[169] << 2) | (data[170] << 1) | data[171];
break;
case 172:
max_notes = data[param_num];
break;
}
TRACE("Done: Parameter %d changed from %d to %d", param_num, tmp, data[param_num]);
}
}
*/
uint8_t Dexed::getEngineType() {
return engineType;
}
void Dexed::setEngineType(uint8_t tp) {
TRACE("settings engine %d", tp);
if (engineType == tp && controllers.core != NULL)
return;
switch (tp) {
case DEXED_ENGINE_MARKI:
TRACE("DEXED_ENGINE_MARKI:%d", DEXED_ENGINE_MARKI);
controllers.core = engineMkI;
break;
case DEXED_ENGINE_OPL:
TRACE("DEXED_ENGINE_OPL:%d", DEXED_ENGINE_OPL);
controllers.core = engineOpl;
break;
default:
TRACE("DEXED_ENGINE_MODERN:%d", DEXED_ENGINE_MODERN);
controllers.core = engineMsfa;
tp = DEXED_ENGINE_MODERN;
break;
}
engineType = tp;
panic();
controllers.refresh();
}
bool Dexed::isMonoMode(void) {
return monoMode;
}
void Dexed::setMonoMode(bool mode) {
if (monoMode == mode)
return;
monoMode = mode;
}
void Dexed::panic(void) {
for (uint8_t i = 0; i < MAX_ACTIVE_NOTES; i++)
{
if (voices[i].live == true) {
voices[i].keydown = false;
voices[i].live = false;
voices[i].sustained = false;
if ( voices[i].dx7_note != NULL ) {
voices[i].dx7_note->oscSync();
}
}
}
}
void Dexed::notes_off(void) {
for (uint8_t i = 0; i < MAX_ACTIVE_NOTES; i++) {
if (voices[i].live == true && voices[i].keydown == true) {
voices[i].keydown = false;
}
}
}
void Dexed::set_params(void)
{
/* //TRACE("Hi");
_param_change_counter=0;
bool polymono=bool(*p(p_polymono));
uint8_t engine=uint8_t(*p(p_engine));
float f_gain=*p(p_output);
float f_cutoff=*p(p_cutoff);
float f_reso=*p(p_resonance);
// Dexed-Unisono
if(isMonoMode()!=polymono)
setMonoMode(polymono);
// Dexed-Engine
if(controllers.core==NULL || getEngineType()!=engine)
{
setEngineType(engine);
refreshVoice=true;
}
// Dexed-Filter
if(fx.uiCutoff!=f_cutoff)
{
fx.uiCutoff=f_cutoff;
refreshVoice=true;
}
if(fx.uiReso!=f_reso)
{
fx.uiReso=f_reso;
refreshVoice=true;
}
if(fx.uiGain!=f_gain)
{
fx.uiGain=f_gain;
refreshVoice=true;
}
// OP6
onParam(0,*p(p_op6_eg_rate_1));
onParam(1,*p(p_op6_eg_rate_2));
onParam(2,*p(p_op6_eg_rate_3));
onParam(3,*p(p_op6_eg_rate_4));
onParam(4,*p(p_op6_eg_level_1));
onParam(5,*p(p_op6_eg_level_2));
onParam(6,*p(p_op6_eg_level_3));
onParam(7,*p(p_op6_eg_level_4));
onParam(8,*p(p_op6_kbd_lev_scl_brk_pt));
onParam(9,*p(p_op6_kbd_lev_scl_lft_depth));
onParam(10,*p(p_op6_kbd_lev_scl_rht_depth));
onParam(11,*p(p_op6_kbd_lev_scl_lft_curve));
onParam(12,*p(p_op6_kbd_lev_scl_rht_curve));
onParam(13,*p(p_op6_kbd_rate_scaling));
onParam(14,*p(p_op6_amp_mod_sensitivity));
onParam(15,*p(p_op6_key_vel_sensitivity));
onParam(16,*p(p_op6_operator_output_level));
onParam(17,*p(p_op6_osc_mode));
onParam(18,*p(p_op6_osc_freq_coarse));
onParam(19,*p(p_op6_osc_freq_fine));
onParam(20,*p(p_op6_osc_detune)+7);
// OP5
onParam(21,*p(p_op5_eg_rate_1));
onParam(22,*p(p_op5_eg_rate_2));
onParam(23,*p(p_op5_eg_rate_3));
onParam(24,*p(p_op5_eg_rate_4));
onParam(25,*p(p_op5_eg_level_1));
onParam(26,*p(p_op5_eg_level_2));
onParam(27,*p(p_op5_eg_level_3));
onParam(28,*p(p_op5_eg_level_4));
onParam(29,*p(p_op5_kbd_lev_scl_brk_pt));
onParam(30,*p(p_op5_kbd_lev_scl_lft_depth));
onParam(31,*p(p_op5_kbd_lev_scl_rht_depth));
onParam(32,*p(p_op5_kbd_lev_scl_lft_curve));
onParam(33,*p(p_op5_kbd_lev_scl_rht_curve));
onParam(34,*p(p_op5_kbd_rate_scaling));
onParam(35,*p(p_op5_amp_mod_sensitivity));
onParam(36,*p(p_op5_key_vel_sensitivity));
onParam(37,*p(p_op5_operator_output_level));
onParam(38,*p(p_op5_osc_mode));
onParam(39,*p(p_op5_osc_freq_coarse));
onParam(40,*p(p_op5_osc_freq_fine));
onParam(41,*p(p_op5_osc_detune)+7);
// OP4
onParam(42,*p(p_op4_eg_rate_1));
onParam(43,*p(p_op4_eg_rate_2));
onParam(44,*p(p_op4_eg_rate_3));
onParam(45,*p(p_op4_eg_rate_4));
onParam(46,*p(p_op4_eg_level_1));
onParam(47,*p(p_op4_eg_level_2));
onParam(48,*p(p_op4_eg_level_3));
onParam(49,*p(p_op4_eg_level_4));
onParam(50,*p(p_op4_kbd_lev_scl_brk_pt));
onParam(51,*p(p_op4_kbd_lev_scl_lft_depth));
onParam(52,*p(p_op4_kbd_lev_scl_rht_depth));
onParam(53,*p(p_op4_kbd_lev_scl_lft_curve));
onParam(54,*p(p_op4_kbd_lev_scl_rht_curve));
onParam(55,*p(p_op4_kbd_rate_scaling));
onParam(56,*p(p_op4_amp_mod_sensitivity));
onParam(57,*p(p_op4_key_vel_sensitivity));
onParam(58,*p(p_op4_operator_output_level));
onParam(59,*p(p_op4_osc_mode));
onParam(60,*p(p_op4_osc_freq_coarse));
onParam(61,*p(p_op4_osc_freq_fine));
onParam(62,*p(p_op4_osc_detune)+7);
// OP3
onParam(63,*p(p_op3_eg_rate_1));
onParam(64,*p(p_op3_eg_rate_2));
onParam(65,*p(p_op3_eg_rate_3));
onParam(66,*p(p_op3_eg_rate_4));
onParam(67,*p(p_op3_eg_level_1));
onParam(68,*p(p_op3_eg_level_2));
onParam(69,*p(p_op3_eg_level_3));
onParam(70,*p(p_op3_eg_level_4));
onParam(71,*p(p_op3_kbd_lev_scl_brk_pt));
onParam(72,*p(p_op3_kbd_lev_scl_lft_depth));
onParam(73,*p(p_op3_kbd_lev_scl_rht_depth));
onParam(74,*p(p_op3_kbd_lev_scl_lft_curve));
onParam(75,*p(p_op3_kbd_lev_scl_rht_curve));
onParam(76,*p(p_op3_kbd_rate_scaling));
onParam(77,*p(p_op3_amp_mod_sensitivity));
onParam(78,*p(p_op3_key_vel_sensitivity));
onParam(79,*p(p_op3_operator_output_level));
onParam(80,*p(p_op3_osc_mode));
onParam(81,*p(p_op3_osc_freq_coarse));
onParam(82,*p(p_op3_osc_freq_fine));
onParam(83,*p(p_op3_osc_detune)+7);
// OP2
onParam(84,*p(p_op2_eg_rate_1));
onParam(85,*p(p_op2_eg_rate_2));
onParam(86,*p(p_op2_eg_rate_3));
onParam(87,*p(p_op2_eg_rate_4));
onParam(88,*p(p_op2_eg_level_1));
onParam(89,*p(p_op2_eg_level_2));
onParam(90,*p(p_op2_eg_level_3));
onParam(91,*p(p_op2_eg_level_4));
onParam(92,*p(p_op2_kbd_lev_scl_brk_pt));
onParam(93,*p(p_op2_kbd_lev_scl_lft_depth));
onParam(94,*p(p_op2_kbd_lev_scl_rht_depth));
onParam(95,*p(p_op2_kbd_lev_scl_lft_curve));
onParam(96,*p(p_op2_kbd_lev_scl_rht_curve));
onParam(97,*p(p_op2_kbd_rate_scaling));
onParam(98,*p(p_op2_amp_mod_sensitivity));
onParam(99,*p(p_op2_key_vel_sensitivity));
onParam(100,*p(p_op2_operator_output_level));
onParam(101,*p(p_op2_osc_mode));
onParam(102,*p(p_op2_osc_freq_coarse));
onParam(103,*p(p_op2_osc_freq_fine));
onParam(104,*p(p_op2_osc_detune)+7);
// OP1
onParam(105,*p(p_op1_eg_rate_1));
onParam(106,*p(p_op1_eg_rate_2));
onParam(107,*p(p_op1_eg_rate_3));
onParam(108,*p(p_op1_eg_rate_4));
onParam(109,*p(p_op1_eg_level_1));
onParam(110,*p(p_op1_eg_level_2));
onParam(111,*p(p_op1_eg_level_3));
onParam(112,*p(p_op1_eg_level_4));
onParam(113,*p(p_op1_kbd_lev_scl_brk_pt));
onParam(114,*p(p_op1_kbd_lev_scl_lft_depth));
onParam(115,*p(p_op1_kbd_lev_scl_rht_depth));
onParam(116,*p(p_op1_kbd_lev_scl_lft_curve));
onParam(117,*p(p_op1_kbd_lev_scl_rht_curve));
onParam(118,*p(p_op1_kbd_rate_scaling));
onParam(119,*p(p_op1_amp_mod_sensitivity));
onParam(120,*p(p_op1_key_vel_sensitivity));
onParam(121,*p(p_op1_operator_output_level));
onParam(122,*p(p_op1_osc_mode));
onParam(123,*p(p_op1_osc_freq_coarse));
onParam(124,*p(p_op1_osc_freq_fine));
onParam(125,*p(p_op1_osc_detune)+7);
// Global for all OPs
onParam(126,*p(p_pitch_eg_rate_1));
onParam(127,*p(p_pitch_eg_rate_2));
onParam(128,*p(p_pitch_eg_rate_3));
onParam(129,*p(p_pitch_eg_rate_4));
onParam(130,*p(p_pitch_eg_level_1));
onParam(131,*p(p_pitch_eg_level_2));
onParam(132,*p(p_pitch_eg_level_3));
onParam(133,*p(p_pitch_eg_level_4));
onParam(134,*p(p_algorithm_num)-1);
onParam(135,*p(p_feedback));
onParam(136,*p(p_oscillator_sync));
onParam(137,*p(p_lfo_speed));
onParam(138,*p(p_lfo_delay));
onParam(139,*p(p_lfo_pitch_mod_depth));
onParam(140,*p(p_lfo_amp_mod_depth));
onParam(141,*p(p_lfo_sync));
onParam(142,*p(p_lfo_waveform));
onParam(143,*p(p_pitch_mod_sensitivity));
onParam(144,*p(p_transpose));
// 10 bytes (145-154) are the name of the patch
// Controllers (added at the end of the data[])
onParam(155,*p(p_pitch_bend_range));
onParam(156,*p(p_pitch_bend_step));
onParam(157,*p(p_mod_wheel_range));
onParam(158,*p(p_mod_wheel_assign));
onParam(159,*p(p_foot_ctrl_range));
onParam(160,*p(p_foot_ctrl_assign));
onParam(161,*p(p_breath_ctrl_range));
onParam(162,*p(p_breath_ctrl_assign));
onParam(163,*p(p_aftertouch_range));
onParam(164,*p(p_aftertouch_assign));
onParam(165,*p(p_master_tune));
onParam(166,*p(p_op1_enable));
onParam(167,*p(p_op2_enable));
onParam(168,*p(p_op3_enable));
onParam(169,*p(p_op4_enable));
onParam(170,*p(p_op5_enable));
onParam(171,*p(p_op6_enable));
onParam(172,*p(p_number_of_voices));
if(_param_change_counter>PARAM_CHANGE_LEVEL)
{
panic();
controllers.refresh();
}
//TRACE("Bye");
*/
;
}