You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
MicroDexed/MicroDexed.ino

730 lines
22 KiB

/*
MicroDexed
MicroDexed is a port of the Dexed sound engine
(https://github.com/asb2m10/dexed) for the Teensy-3.5/3.6 with audio shield. Dexed ist heavily based on https://github.com/google/music-synthesizer-for-android
(c)2018 H. Wirtz <wirtz@parasitstudio.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <Audio.h>
#include <Wire.h>
#include <SPI.h>
#include <SD.h>
#include <MIDI.h>
#include <EEPROM.h>
#include "dexed.h"
#include "dexed_sysex.h"
#include "config.h"
#ifdef USE_ONBOARD_USB_HOST
#include <USBHost_t36.h>
#endif
#ifdef MASTER_BUTTON_PIN
#include <Bounce.h>
#endif
#if !defined(MASTER_KEY_MIDI) || !defined(MASTER_BUTTON_PIN) // selecting sounds by encoder, button and display
#include <Bounce.h>
#include <Encoder.h>
#include <LiquidCrystalPlus_I2C.h>
#endif
#if !defined(MASTER_KEY_MIDI) || !defined(MASTER_BUTTON_PIN)
// [I2C] SCL: Pin 19, SDA: Pin 18 (https://www.pjrc.com/teensy/td_libs_Wire.html)
#define LCD_I2C_ADDRESS 0x3f
#define LCD_CHARS 20
#define LCD_LINES 4
LiquidCrystalPlus_I2C lcd(LCD_I2C_ADDRESS, LCD_CHARS, LCD_LINES);
Encoder enc1(ENC1_PIN_A, ENC1_PIN_B);
Bounce but1 = Bounce(BUT1_PIN, 10); // 10 ms debounce
#endif
#ifdef MASTER_BUTTON_PIN
Bounce master_key = Bounce(MASTER_BUTTON_PIN, 10); // 10 ms debounce
#endif
// GUItool: begin automatically generated code
AudioPlayQueue queue1; //xy=335,318
AudioAmplifier amp1; //xy=873,270
AudioAmplifier amp2; //xy=876,319
AudioOutputI2S i2s1; //xy=1212,300
AudioConnection patchCord1(queue1, amp1);
AudioConnection patchCord2(queue1, amp2);
AudioConnection patchCord3(amp1, 0, i2s1, 0);
AudioConnection patchCord4(amp2, 0, i2s1, 1);
AudioControlSGTL5000 sgtl5000_1; //xy=758,427
// GUItool: end automatically generated code
Dexed* dexed = new Dexed(SAMPLE_RATE);
bool sd_card_available = false;
uint8_t bank = EEPROM.read(EEPROM_BANK_ADDR);
uint8_t midi_channel = DEFAULT_MIDI_CHANNEL;
uint32_t xrun = 0;
uint32_t overload = 0;
#if defined(MASTER_KEY_MIDI) || defined(MASTER_BUTTON_PIN)
bool master_key_enabled = false;
#endif
#ifdef SHOW_CPU_LOAD_MSEC
elapsedMillis cpu_mem_millis;
#endif
#ifdef MIDI_DEVICE
MIDI_CREATE_INSTANCE(HardwareSerial, MIDI_DEVICE, midi_serial);
#endif
#ifdef USE_ONBOARD_USB_HOST
USBHost usb_host;
MIDIDevice midi_usb(usb_host);
#endif
#ifdef TEST_NOTE
IntervalTimer sched_note_on;
IntervalTimer sched_note_off;
uint8_t _voice_counter = 0;
#endif
void setup()
{
//while (!Serial) ; // wait for Arduino Serial Monitor
Serial.begin(SERIAL_SPEED);
delay(200);
#if !defined(MASTER_KEY_MIDI) && !defined(MASTER_BUTTON_PIN)
lcd.init();
lcd.blink_off();
lcd.cursor_off();
lcd.backlight();
lcd.noAutoscroll();
lcd.clear();
lcd.display();
lcd.show(0, 0, 20, "MicroDexed");
enc1.write(INITIAL_ENC1_VALUE);
#endif
Serial.println(F("MicroDexed based on https://github.com/asb2m10/dexed"));
Serial.println(F("(c)2018 H. Wirtz <wirtz@parasitstudio.de>"));
Serial.println(F("https://github.com/dcoredump/MicroDexed"));
Serial.println(F("<setup start>"));
// start up USB host
#ifdef USE_ONBOARD_USB_HOST
usb_host.begin();
#endif
#ifdef MIDI_DEVICE
// Start serial MIDI
midi_serial.begin(DEFAULT_MIDI_CHANNEL);
#endif
// start audio card
AudioMemory(AUDIO_MEM);
sgtl5000_1.enable();
sgtl5000_1.volume(VOLUME);
amp1.gain(1.0);
amp2.gain(1.0);
// start SD card
SPI.setMOSI(SDCARD_MOSI_PIN);
SPI.setSCK(SDCARD_SCK_PIN);
if (!SD.begin(SDCARD_CS_PIN))
{
Serial.println(F("SD card not accessable"));
}
else
{
Serial.println(F("SD card found."));
sd_card_available = true;
}
#if defined (DEBUG) && defined (SHOW_CPU_LOAD_MSEC)
// Initialize processor and memory measurements
AudioProcessorUsageMaxReset();
AudioMemoryUsageMaxReset();
#endif
// load default SYSEX data
load_sysex(bank, EEPROM.read(EEPROM_VOICE_ADDR));
#ifdef DEBUG
show_patch();
#endif
Serial.print(F("AUDIO_BLOCK_SAMPLES="));
Serial.println(AUDIO_BLOCK_SAMPLES);
#ifdef TEST_NOTE
Serial.println(F("MIDI test enabled"));
sched_note_on.begin(note_on, 2000000);
sched_note_off.begin(note_off, 6333333);
#endif
Serial.println(F("<setup end>"));
#if defined (DEBUG) && defined (SHOW_CPU_LOAD_MSEC)
show_cpu_and_mem_usage();
cpu_mem_millis = 0;
#endif
#ifdef MASTER_BUTTON_PIN
pinMode(MASTER_BUTTON_PIN, INPUT_PULLUP);
#endif
#ifdef TEST_NOTE
//dexed->data[DEXED_VOICE_OFFSET+DEXED_LFO_PITCH_MOD_DEP] = 99; // full pitch mod depth
//dexed->data[DEXED_VOICE_OFFSET+DEXED_LFO_PITCH_MOD_SENS] = 99; // full pitch mod sense
//dexed->data[DEXED_GLOBAL_PARAMETER_OFFSET+DEXED_MODWHEEL_ASSIGN] = 7; // mod wheel assign all
//dexed->data[DEXED_GLOBAL_PARAMETER_OFFSET+DEXED_FOOTCTRL_ASSIGN] = 7; // foot ctrl assign all
//dexed->data[DEXED_GLOBAL_PARAMETER_OFFSET+DEXED_BREATHCTRL_ASSIGN] = 7; // breath ctrl assign all
//dexed->data[DEXED_GLOBAL_PARAMETER_OFFSET+AT_ASSIGN] = 7; // at ctrl assign all
//queue_midi_event(0xb0, 1, 99); // test mod wheel
//queue_midi_event(0xb0, 2, 99); // test breath ctrl
//queue_midi_event(0xb0, 4, 99); // test food switch
//queue_midi_event(0xd0, 4, 99); // test at
//queue_midi_event(0xe0, 0xff, 0xff); // test pitch bend
#endif
}
void loop()
{
int16_t* audio_buffer; // pointer to 128 * int16_t (=256 bytes!)
while (42 == 42) // DON'T PANIC!
{
#if defined (DEBUG) && defined (SHOW_CPU_LOAD_MSEC)
if (cpu_mem_millis > SHOW_CPU_LOAD_MSEC)
{
show_cpu_and_mem_usage();
cpu_mem_millis = 0;
}
#endif
#if MASTER_BUTTON_PIN
if (master_key.update())
{
if (master_key.fallingEdge())
{
master_key_enabled = true;
dexed->notesOff();
Serial.println(F("Master key enabled"));
}
else if (master_key.risingEdge())
{
master_key_enabled = false;
Serial.println(F("Master key disabled"));
}
}
#endif
handle_input();
audio_buffer = queue1.getBuffer();
if (audio_buffer == NULL)
{
Serial.println(F("E: audio_buffer allocation problems!"));
}
if (!queue1.available())
continue;
elapsedMicros t1;
dexed->getSamples(AUDIO_BLOCK_SAMPLES, audio_buffer);
uint32_t t2 = t1;
if (t2 > 2900) // everything greater 2.9ms is a buffer underrun!
xrun++;
#ifdef SHOW_DEXED_TIMING
Serial.println(t1, DEC);
#endif
queue1.playBuffer();
}
}
void handle_input(void)
{
#ifdef USE_ONBOARD_USB_HOST
usb_host.Task();
while (midi_usb.read())
{
#ifdef DEBUG
Serial.println(F("[MIDI-USB]"));
#endif
if (midi_usb.getType() >= 0xf0) // SysEX
{
handle_sysex_parameter(midi_usb.getSysExArray(), midi_usb.getSysExArrayLength());
}
else if (queue_midi_event(midi_usb.getType(), midi_usb.getData1(), midi_usb.getData2()))
return;
}
#endif
#ifdef MIDI_DEVICE
while (midi_serial.read())
{
#ifdef DEBUG
Serial.print(F("[MIDI-Serial] "));
#endif
if (midi_serial.getType() >= 0xf0) // SYSEX
{
handle_sysex_parameter(midi_serial.getSysExArray(), midi_serial.getSysExArrayLength());
}
else if (queue_midi_event(midi_serial.getType(), midi_serial.getData1(), midi_serial.getData2()))
return;
}
#endif
#if !defined(MASTER_KEY_MIDI) && !defined(MASTER_BUTTON_PIN)
int enc1_val = enc1.read();
if (but1.update())
;
// place handling of encoder and showing values on lcd here
#endif
}
#ifdef TEST_NOTE
void note_on(void)
{
randomSeed(analogRead(A0));
queue_midi_event(0x90, TEST_NOTE, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 1
queue_midi_event(0x90, TEST_NOTE + 5, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 2
queue_midi_event(0x90, TEST_NOTE + 8, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 3
queue_midi_event(0x90, TEST_NOTE + 12, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 4
queue_midi_event(0x90, TEST_NOTE + 17, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 5
queue_midi_event(0x90, TEST_NOTE + 20, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 6
queue_midi_event(0x90, TEST_NOTE + 24, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 7
queue_midi_event(0x90, TEST_NOTE + 29, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 8
queue_midi_event(0x90, TEST_NOTE + 32, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 9
queue_midi_event(0x90, TEST_NOTE + 37, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 10
queue_midi_event(0x90, TEST_NOTE + 40, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 11
queue_midi_event(0x90, TEST_NOTE + 46, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 12
queue_midi_event(0x90, TEST_NOTE + 49, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 13
queue_midi_event(0x90, TEST_NOTE + 52, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 14
queue_midi_event(0x90, TEST_NOTE + 57, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 15
queue_midi_event(0x90, TEST_NOTE + 60, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 16
}
void note_off(void)
{
queue_midi_event(0x80, TEST_NOTE, 0); // 1
queue_midi_event(0x80, TEST_NOTE + 5, 0); // 2
queue_midi_event(0x80, TEST_NOTE + 8, 0); // 3
queue_midi_event(0x80, TEST_NOTE + 12, 0); // 4
queue_midi_event(0x80, TEST_NOTE + 17, 0); // 5
queue_midi_event(0x80, TEST_NOTE + 20, 0); // 6
queue_midi_event(0x80, TEST_NOTE + 24, 0); // 7
queue_midi_event(0x80, TEST_NOTE + 29, 0); // 8
queue_midi_event(0x80, TEST_NOTE + 32, 0); // 9
queue_midi_event(0x80, TEST_NOTE + 37, 0); // 10
queue_midi_event(0x80, TEST_NOTE + 40, 0); // 11
queue_midi_event(0x80, TEST_NOTE + 46, 0); // 12
queue_midi_event(0x80, TEST_NOTE + 49, 0); // 13
queue_midi_event(0x80, TEST_NOTE + 52, 0); // 14
queue_midi_event(0x80, TEST_NOTE + 57, 0); // 15
queue_midi_event(0x80, TEST_NOTE + 60, 0); // 16
bool success = load_sysex(DEFAULT_SYSEXBANK, (++_voice_counter) - 1);
if (success == false)
#ifdef DEBUG
Serial.println(F("E: Cannot load SYSEX data"));
#endif
else
show_patch();
}
#endif
#ifdef DEBUG
#ifdef SHOW_MIDI_EVENT
void print_midi_event(uint8_t type, uint8_t data1, uint8_t data2)
{
Serial.print(F("MIDI-Channel: "));
if (midi_channel == MIDI_CHANNEL_OMNI)
Serial.print(F("OMNI"));
else
Serial.print(midi_channel, DEC);
Serial.print(F(", MIDI event type: 0x"));
if (type < 16)
Serial.print(F("0"));
Serial.print(type, HEX);
Serial.print(F(", data1: "));
Serial.print(data1, DEC);
Serial.print(F(", data2: "));
Serial.println(data2, DEC);
}
#endif
#endif
#if defined(MASTER_KEY_MIDI) || defined(MASTER_BUTTON_PIN)
bool handle_master_key(uint8_t data)
{
int8_t num = num_key_base_c(data);
#ifdef DEBUG
Serial.print(F("Master-Key: "));
Serial.println(num, DEC);
#endif
if (num > 0)
{
// a white key!
if (num <= 32)
{
if (load_sysex(bank, num))
{
#ifdef DEBUG
Serial.print(F("Loading voice number "));
Serial.println(num, DEC);
#endif
store_voice_number(bank, num);
}
#ifdef DEBUG
else
{
Serial.print(F("E: cannot load voice number "));
Serial.println(num, DEC);
}
#endif
}
return (true);
}
else
{
// a black key!
num = abs(num);
if (num <= 10)
{
sgtl5000_1.volume(num * 0.1);
#ifdef DEBUG
Serial.print(F("Volume changed to: "));
Serial.println(num * 0.1, DEC);
#endif
}
else if (num > 10 && num <= 20)
{
bank = num - 10;
#ifdef DEBUG
Serial.print(F("Bank switch to: "));
Serial.println(bank, DEC);
#endif
}
}
return (false);
}
#endif
bool queue_midi_event(uint8_t type, uint8_t data1, uint8_t data2)
{
bool ret = false;
#if defined(DEBUG) && defined(SHOW_MIDI_EVENT)
print_midi_event(type, data1, data2);
#endif
// check for MIDI channel
if (midi_channel != MIDI_CHANNEL_OMNI)
{
uint8_t c = type & 0x0f;
if (c != midi_channel)
return (true);
}
// now throw away the MIDI channel information
type &= 0xf0;
#ifdef MASTER_KEY_MIDI
if (type == 0x80 && data1 == MASTER_KEY_MIDI) // Master key released
{
master_key_enabled = false;
#ifdef DEBUG
Serial.println(F("Master key disabled"));
#endif
}
else if (type == 0x90 && data1 == MASTER_KEY_MIDI) // Master key pressed
{
dexed->notesOff();
master_key_enabled = true;
#ifdef DEBUG
Serial.println(F("Master key enabled"));
#endif
}
else
{
#endif
#if defined(MASTER_KEY_MIDI) || defined(MASTER_BUTTON_PIN)
if (master_key_enabled)
{
if (type == 0x80) // handle when note is released
handle_master_key(data1);
}
else
#endif
ret = dexed->processMidiMessage(type, data1, data2);
#if defined(MASTER_KEY_MIDI)
}
#endif
return (ret);
}
#if defined(MASTER_KEY_MIDI) || defined(MASTER_BUTTON_PIN)
int8_t num_key_base_c(uint8_t midi_note)
{
int8_t num = 0;
switch (midi_note % 12)
{
// positive numbers are white keys, negative black ones
case 0:
num = 1;
break;
case 1:
num = -1;
break;
case 2:
num = 2;
break;
case 3:
num = -2;
break;
case 4:
num = 3;
break;
case 5:
num = 4;
break;
case 6:
num = -3;
break;
case 7:
num = 5;
break;
case 8:
num = -4;
break;
case 9:
num = 6;
break;
case 10:
num = -5;
break;
case 11:
num = 7;
break;
}
if (num > 0)
return (num + (((midi_note - MASTER_NUM1) / 12) * 7));
else
return (num + ((((midi_note - MASTER_NUM1) / 12) * 5) * -1));
}
#endif
void store_voice_number(uint8_t bank, uint8_t voice)
{
if (EEPROM.read(EEPROM_BANK_ADDR) != bank)
EEPROM.write(EEPROM_BANK_ADDR, bank);
if (EEPROM.read(EEPROM_VOICE_ADDR) != voice)
EEPROM.write(EEPROM_VOICE_ADDR, voice);
}
void handle_sysex_parameter(const uint8_t* sysex, uint8_t len)
{
if (sysex[1] != 0x43) // check for Yamaha sysex
{
#ifdef DEBUG
Serial.println(F("E: SysEx vendor not Yamaha."));
#endif
return;
}
// parse parameter change
if (len == 7)
{
if ((sysex[3] & 0x7c) != 0 || (sysex[3] & 0x7c) != 2)
{
#ifdef DEBUG
Serial.println(F("E: Not a SysEx parameter or function parameter change."));
#endif
return;
}
if (sysex[6] != 0xf7)
{
#ifdef DEBUG
Serial.println(F("E: SysEx end status byte not detected."));
#endif
return;
}
if ((sysex[3] & 0x7c) == 0)
{
dexed->data[sysex[4]] = sysex[5]; // set parameter
dexed->doRefreshVoice();
}
else
{
dexed->data[DEXED_GLOBAL_PARAMETER_OFFSET - 63 + sysex[4]] = sysex[5]; // set function parameter
dexed->controllers.values_[kControllerPitchRange] = dexed->data[DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_PITCHBEND_RANGE];
dexed->controllers.values_[kControllerPitchStep] = dexed->data[DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_PITCHBEND_STEP];
dexed->controllers.wheel.setRange(dexed->data[DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_MODWHEEL_RANGE]);
dexed->controllers.wheel.setTarget(dexed->data[DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_MODWHEEL_ASSIGN]);
dexed->controllers.foot.setRange(dexed->data[DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_FOOTCTRL_RANGE]);
dexed->controllers.foot.setTarget(dexed->data[DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_FOOTCTRL_ASSIGN]);
dexed->controllers.breath.setRange(dexed->data[DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_BREATHCTRL_RANGE]);
dexed->controllers.breath.setTarget(dexed->data[DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_BREATHCTRL_ASSIGN]);
dexed->controllers.at.setRange(dexed->data[DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_AT_RANGE]);
dexed->controllers.at.setTarget(dexed->data[DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_AT_ASSIGN]);
dexed->controllers.masterTune = (dexed->data[DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_MASTER_TUNE] * 0x4000 << 11) * (1.0 / 12);
dexed->controllers.refresh();
}
#ifdef DEBUG
Serial.print(F("SysEx"));
if ((sysex[3] & 0x7c) == 0)
Serial.print(F(" function"));
Serial.print(F(" parameter "));
Serial.print(sysex[4], DEC);
Serial.print(F(" = "));
Serial.println(sysex[5], DEC);
#endif
}
#ifdef DEBUG
else
Serial.println(F("E: SysEx parameter length wrong."));
#endif
}
#if defined (DEBUG) && defined (SHOW_CPU_LOAD_MSEC)
void show_cpu_and_mem_usage(void)
{
Serial.print(F("CPU: "));
Serial.print(AudioProcessorUsage(), DEC);
Serial.print(F(" CPU MAX: "));
Serial.print(AudioProcessorUsageMax(), DEC);
Serial.print(F(" MEM: "));
Serial.print(AudioMemoryUsage(), DEC);
Serial.print(F(" MEM MAX: "));
Serial.print(AudioMemoryUsageMax(), DEC);
Serial.print(F(" XRUN: "));
Serial.print(xrun, DEC);
Serial.print(F(" OVERLOAD: "));
Serial.print(overload, DEC);
Serial.println();
AudioProcessorUsageMaxReset();
AudioMemoryUsageMaxReset();
}
#endif
#ifdef DEBUG
void show_patch(void)
{
uint8_t i;
char voicename[11];
memset(voicename, 0, sizeof(voicename));
for (i = 0; i < 6; i++)
{
Serial.print(F("OP"));
Serial.print(6 - i, DEC);
Serial.println(F(": "));
Serial.println(F("R1 | R2 | R3 | R4 | L1 | L2 | L3 | L4 LEV_SCL_BRK_PT | SCL_LEFT_DEPTH | SCL_RGHT_DEPTH"));
Serial.print(dexed->data[(i * 21) + DEXED_OP_EG_R1], DEC);
Serial.print(F(" "));
Serial.print(dexed->data[(i * 21) + DEXED_OP_EG_R2], DEC);
Serial.print(F(" "));
Serial.print(dexed->data[(i * 21) + DEXED_OP_EG_R3], DEC);
Serial.print(F(" "));
Serial.print(dexed->data[(i * 21) + DEXED_OP_EG_R4], DEC);
Serial.print(F(" "));
Serial.print(dexed->data[(i * 21) + DEXED_OP_EG_L1], DEC);
Serial.print(F(" "));
Serial.print(dexed->data[(i * 21) + DEXED_OP_EG_L2], DEC);
Serial.print(F(" "));
Serial.print(dexed->data[(i * 21) + DEXED_OP_EG_L3], DEC);
Serial.print(F(" "));
Serial.print(dexed->data[(i * 21) + DEXED_OP_EG_L4], DEC);
Serial.print(F(" "));
Serial.print(dexed->data[(i * 21) + DEXED_OP_LEV_SCL_BRK_PT], DEC);
Serial.print(F(" "));
Serial.print(dexed->data[(i * 21) + DEXED_OP_SCL_LEFT_DEPTH], DEC);
Serial.print(F(" "));
Serial.println(dexed->data[(i * 21) + DEXED_OP_SCL_RGHT_DEPTH], DEC);
Serial.println(F("SCL_L_CURVE | SCL_R_CURVE | RT_SCALE | AMS | KVS | OUT_LEV | OP_MOD | FRQ_C | FRQ_F | DETUNE"));
Serial.print(F(" "));
Serial.print(dexed->data[(i * 21) + DEXED_OP_SCL_LEFT_CURVE], DEC);
Serial.print(F(" "));
Serial.print(dexed->data[(i * 21) + DEXED_OP_SCL_RGHT_CURVE], DEC);
Serial.print(F(" "));
Serial.print(dexed->data[(i * 21) + DEXED_OP_OSC_RATE_SCALE], DEC);
Serial.print(F(" "));
Serial.print(dexed->data[(i * 21) + DEXED_OP_AMP_MOD_SENS], DEC);
Serial.print(F(" "));
Serial.print(dexed->data[(i * 21) + DEXED_OP_KEY_VEL_SENS], DEC);
Serial.print(F(" "));
Serial.print(dexed->data[(i * 21) + DEXED_OP_OUTPUT_LEV], DEC);
Serial.print(F(" "));
Serial.print(dexed->data[(i * 21) + DEXED_OP_OSC_MODE], DEC);
Serial.print(F(" "));
Serial.print(dexed->data[(i * 21) + DEXED_OP_FREQ_COARSE], DEC);
Serial.print(F(" "));
Serial.print(dexed->data[(i * 21) + DEXED_OP_FREQ_FINE], DEC);
Serial.print(F(" "));
Serial.println(dexed->data[(i * 21) + DEXED_OP_OSC_DETUNE], DEC);
}
Serial.println(F("PR1 | PR2 | PR3 | PR4 | PL1 | PL2 | PL3 | PL4"));
Serial.print(F(" "));
for (i = 0; i < 8; i++)
{
Serial.print(dexed->data[DEXED_VOICE_OFFSET + i], DEC);
Serial.print(F(" "));
}
Serial.println();
Serial.print(F("ALG: "));
Serial.println(dexed->data[DEXED_VOICE_OFFSET + DEXED_ALGORITHM], DEC);
Serial.print(F("FB: "));
Serial.println(dexed->data[DEXED_VOICE_OFFSET + DEXED_FEEDBACK], DEC);
Serial.print(F("OKS: "));
Serial.println(dexed->data[DEXED_VOICE_OFFSET + DEXED_OSC_KEY_SYNC], DEC);
Serial.print(F("LFO SPD: "));
Serial.println(dexed->data[DEXED_VOICE_OFFSET + DEXED_LFO_SPEED], DEC);
Serial.print(F("LFO_DLY: "));
Serial.println(dexed->data[DEXED_VOICE_OFFSET + DEXED_LFO_DELAY], DEC);
Serial.print(F("LFO PMD: "));
Serial.println(dexed->data[DEXED_VOICE_OFFSET + DEXED_LFO_PITCH_MOD_DEP], DEC);
Serial.print(F("LFO_AMD: "));
Serial.println(dexed->data[DEXED_VOICE_OFFSET + DEXED_LFO_AMP_MOD_DEP], DEC);
Serial.print(F("LFO_SYNC: "));
Serial.println(dexed->data[DEXED_VOICE_OFFSET + DEXED_LFO_SYNC], DEC);
Serial.print(F("LFO_WAVEFRM: "));
Serial.println(dexed->data[DEXED_VOICE_OFFSET + DEXED_LFO_WAVE], DEC);
Serial.print(F("LFO_PMS: "));
Serial.println(dexed->data[DEXED_VOICE_OFFSET + DEXED_LFO_PITCH_MOD_SENS], DEC);
Serial.print(F("TRNSPSE: "));
Serial.println(dexed->data[DEXED_VOICE_OFFSET + DEXED_TRANSPOSE], DEC);
Serial.print(F("NAME: "));
strncpy(voicename, (char *)&dexed->data[DEXED_VOICE_OFFSET + DEXED_NAME], sizeof(voicename) - 1);
Serial.print(F("["));
Serial.print(voicename);
Serial.println(F("]"));
for (i = DEXED_GLOBAL_PARAMETER_OFFSET; i <= DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_MAX_NOTES; i++)
{
Serial.print(i, DEC);
Serial.print(F(": "));
Serial.println(dexed->data[i]);
}
Serial.println();
}
#endif