You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
MicroDexed/MicroDexed.ino

2333 lines
89 KiB

/*
MicroDexed
MicroDexed is a port of the Dexed sound engine
(https://github.com/asb2m10/dexed) for the Teensy-3.5/3.6/4.x/4.x with audio shield.
Dexed ist heavily based on https://github.com/google/music-synthesizer-for-android
(c)2018-2020 H. Wirtz <wirtz@parasitstudio.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <limits.h>
#include "config.h"
#include <Audio.h>
#include <Wire.h>
#include <MIDI.h>
#include <EEPROM.h>
#include <SD.h>
#include <SPI.h>
#include "midi_devices.hpp"
#include "dexed.h"
#include "dexed_sd.h"
#include "effect_modulated_delay.h"
#include "effect_stereo_mono.h"
#include "effect_mono_stereo.h"
#include "PluginFx.h"
#include "UI.hpp"
#include "source_microdexed.h"
// Audio engines
AudioSourceMicroDexed* MicroDexed[NUM_DEXED];
AudioAmplifier* dexed_level[NUM_DEXED];
#if defined(USE_FX)
AudioSynthWaveform* chorus_modulator[NUM_DEXED];
#if MOD_FILTER_OUTPUT != MOD_NO_FILTER_OUTPUT
AudioFilterBiquad* modchorus_filter[NUM_DEXED];
#endif
AudioEffectModulatedDelay* modchorus[NUM_DEXED];
AudioMixer4* chorus_mixer[NUM_DEXED];
AudioMixer4* delay_fb_mixer[NUM_DEXED];
AudioEffectDelay* delay_fx[NUM_DEXED];
AudioMixer4* delay_mixer[NUM_DEXED];
#endif
AudioEffectMonoStereo* mono2stereo[NUM_DEXED];
AudioMixer4 microdexed_peak_mixer;
AudioAnalyzePeak microdexed_peak;
#if defined(USE_FX)
AudioMixer4 reverb_mixer_r;
AudioMixer4 reverb_mixer_l;
AudioEffectFreeverb freeverb_r;
AudioEffectFreeverb freeverb_l;
#endif
AudioMixer4 master_mixer_r;
AudioMixer4 master_mixer_l;
AudioAmplifier volume_r;
AudioAmplifier volume_l;
AudioEffectStereoMono stereo2mono;
AudioAnalyzePeak master_peak_r;
AudioAnalyzePeak master_peak_l;
// Audio chain tail
#if defined(USE_FX)
AudioConnection patchCord0(reverb_mixer_r, freeverb_r);
AudioConnection patchCord1(reverb_mixer_l, freeverb_l);
AudioConnection patchCord2(freeverb_r, 0, master_mixer_r, 3);
AudioConnection patchCord3(freeverb_l, 0, master_mixer_l, 3);
#endif
AudioConnection patchCord4(master_mixer_r, volume_r);
AudioConnection patchCord5(master_mixer_l, volume_l);
AudioConnection patchCord6(volume_r, 0, stereo2mono, 0);
AudioConnection patchCord7(volume_l, 0, stereo2mono, 1);
AudioConnection patchCord8(stereo2mono, 0, master_peak_r, 0);
AudioConnection patchCord9(stereo2mono, 0, master_peak_l, 0);
// Outputs
#ifdef AUDIO_DEVICE_USB
AudioOutputUSB usb1;
AudioConnection patchCord10(stereo2mono, 0, usb1, 0);
AudioConnection patchCord11(stereo2mono, 1, usb1, 1);
#endif
#if defined(TEENSY_AUDIO_BOARD)
AudioOutputI2S i2s1;
AudioConnection patchCord12(stereo2mono, 0, i2s1, 0);
AudioConnection patchCord13(stereo2mono, 1, i2s1, 1);
AudioControlSGTL5000 sgtl5000_1;
#elif defined (I2S_AUDIO_ONLY)
AudioOutputI2S i2s1;
AudioConnection patchCord12(stereo2mono, 0, i2s1, 0);
AudioConnection patchCord13(stereo2mono, 1, i2s1, 1);
#elif defined(TGA_AUDIO_BOARD)
AudioOutputI2S i2s1;
AudioConnection patchCord12(stereo2mono, 0, i2s1, 0);
AudioConnection patchCord13(stereo2mono, 1, i2s1, 1);
AudioControlWM8731master wm8731_1;
#elif defined(PT8211_AUDIO)
AudioOutputPT8211 pt8211_1;
AudioConnection patchCord12(stereo2mono, 0, pt8211_1, 0);
AudioConnection patchCord13(stereo2mono, 1, pt8211_1, 1);
#elif defined(TEENSY_DAC_SYMMETRIC)
AudioOutputAnalogStereo dacOut;
AudioMixer4 invMixer;
AudioConnection patchCord12(stereo2mono, 0, dacOut , 0);
AudioConnection patchCord13(stereo2mono, 1, invMixer, 0);
AudioConnection patchCord14(invMixer, 0, dacOut , 1);
#else
AudioOutputAnalogStereo dacOut;
AudioConnection patchCord12(stereo2mono, 0, dacOut, 0);
AudioConnection patchCord13(stereo2mono, 1, dacOut, 1);
#endif
//
// Dynamic patching of MicroDexed objects
//
uint8_t nDynamic = 0;
#if defined(USE_FX) && MOD_FILTER_OUTPUT != MOD_NO_FILTER_OUTPUT
AudioConnection * dynamicConnections[NUM_DEXED * 17];
#elif defined(USE_FX) && MOD_FILTER_OUTPUT == MOD_NO_FILTER_OUTPUT
AudioConnection * dynamicConnections[NUM_DEXED * 16];
#else
AudioConnection * dynamicConnections[NUM_DEXED * 5];
#endif
void create_audio_engine_chain(uint8_t instance_id)
{
MicroDexed[instance_id] = new AudioSourceMicroDexed(SAMPLE_RATE);
dexed_level[instance_id] = new AudioAmplifier();
mono2stereo[instance_id] = new AudioEffectMonoStereo();
#if defined(USE_FX)
chorus_modulator[instance_id] = new AudioSynthWaveform();
#if MOD_FILTER_OUTPUT != MOD_NO_FILTER_OUTPUT
modchorus_filter[instance_id] = new AudioFilterBiquad();
#endif
modchorus[instance_id] = new AudioEffectModulatedDelay();
chorus_mixer[instance_id] = new AudioMixer4();
delay_fb_mixer[instance_id] = new AudioMixer4();
delay_fx[instance_id] = new AudioEffectDelay();
delay_mixer[instance_id] = new AudioMixer4();
#endif
dynamicConnections[nDynamic++] = new AudioConnection(*MicroDexed[instance_id], 0, microdexed_peak_mixer, instance_id);
dynamicConnections[nDynamic++] = new AudioConnection(*MicroDexed[instance_id], 0, *dexed_level[instance_id], 0);
#if defined(USE_FX)
dynamicConnections[nDynamic++] = new AudioConnection(*dexed_level[instance_id], 0, *chorus_mixer[instance_id], 0);
dynamicConnections[nDynamic++] = new AudioConnection(*dexed_level[instance_id], 0, *modchorus[instance_id], 0);
#if MOD_FILTER_OUTPUT != MOD_NO_FILTER_OUTPUT
dynamicConnections[nDynamic++] = new AudioConnection(*chorus_modulator[instance_id], 0, *modchorus_filter[instance_id], 0);
dynamicConnections[nDynamic++] = new AudioConnection(*modchorus_filter[instance_id], 0, *modchorus[instance_id], 1);
#else
dynamicConnections[nDynamic++] = new AudioConnection(*chorus_modulator[instance_id], 0, *modchorus[instance_id], 1);
#endif
dynamicConnections[nDynamic++] = new AudioConnection(*modchorus[instance_id], 0, *chorus_mixer[instance_id], 1);
dynamicConnections[nDynamic++] = new AudioConnection(*chorus_mixer[instance_id], 0, *delay_fb_mixer[instance_id], 0);
dynamicConnections[nDynamic++] = new AudioConnection(*chorus_mixer[instance_id], 0, *delay_mixer[instance_id], 0);
dynamicConnections[nDynamic++] = new AudioConnection(*delay_fb_mixer[instance_id], 0, *delay_fx[instance_id], 0);
dynamicConnections[nDynamic++] = new AudioConnection(*delay_fx[instance_id], 0, *delay_fb_mixer[instance_id], 1);
dynamicConnections[nDynamic++] = new AudioConnection(*delay_fx[instance_id], 0, *delay_mixer[instance_id], 1);
dynamicConnections[nDynamic++] = new AudioConnection(*delay_mixer[instance_id], 0, *mono2stereo[instance_id], 0);
dynamicConnections[nDynamic++] = new AudioConnection(*mono2stereo[instance_id], 0, reverb_mixer_r, instance_id);
dynamicConnections[nDynamic++] = new AudioConnection(*mono2stereo[instance_id], 1, reverb_mixer_l, instance_id);
dynamicConnections[nDynamic++] = new AudioConnection(*mono2stereo[instance_id], 0, master_mixer_r, instance_id);
dynamicConnections[nDynamic++] = new AudioConnection(*mono2stereo[instance_id], 1, master_mixer_l, instance_id);
#else
dynamicConnections[nDynamic++] = new AudioConnection(*dexed_level[instance_id], 0, *mono2stereo[instance_id], 0);
dynamicConnections[nDynamic++] = new AudioConnection(*mono2stereo[instance_id], 0, master_mixer_r, instance_id);
dynamicConnections[nDynamic++] = new AudioConnection(*mono2stereo[instance_id], 1, master_mixer_l, instance_id);
#endif
}
uint8_t sd_card = 0;
Sd2Card card;
SdVolume volume;
uint8_t midi_timing_counter = 0; // 24 per qarter
elapsedMillis midi_timing_timestep;
uint16_t midi_timing_quarter = 0;
elapsedMillis long_button_pressed;
elapsedMillis control_rate;
uint8_t active_voices[NUM_DEXED];
uint8_t midi_voices[NUM_DEXED];
#ifdef SHOW_CPU_LOAD_MSEC
elapsedMillis cpu_mem_millis;
#endif
uint32_t cpumax = 0;
elapsedMillis cpu_overload_throttle_timer;
uint32_t peak_dexed = 0;
float peak_dexed_value = 0.0;
uint32_t peak_r = 0;
uint32_t peak_l = 0;
config_t configuration;
const uint8_t cs_pins[] = { SDCARD_TEENSY_CS_PIN, SDCARD_AUDIO_CS_PIN };
const uint8_t mosi_pins[] = { SDCARD_TEENSY_MOSI_PIN, SDCARD_AUDIO_MOSI_PIN };
const uint8_t sck_pins[] = { SDCARD_TEENSY_SCK_PIN, SDCARD_AUDIO_SCK_PIN };
char version_string[LCD_cols + 1];
char sd_string[LCD_cols + 1];
char g_voice_name[NUM_DEXED][VOICE_NAME_LEN];
char g_bank_name[NUM_DEXED][BANK_NAME_LEN];
char receive_bank_filename[FILENAME_LEN];
uint8_t selected_instance_id = 0;
#if NUM_DEXED>1
int8_t midi_decay[NUM_DEXED] = { -1, -1};
#else
int8_t midi_decay[NUM_DEXED] = { -1};
#endif
elapsedMillis midi_decay_timer;
#if defined(USE_FX)
// Allocate the delay lines for chorus
int16_t delayline[MOD_DELAY_SAMPLE_BUFFER][NUM_DEXED];
#endif
#ifdef ENABLE_LCD_UI
extern LCDMenuLib2 LCDML;
#endif
extern void getNoteName(char* noteName, uint8_t noteNumber);
/***********************************************************************
SETUP
***********************************************************************/
void setup()
{
// Start audio system
AudioNoInterrupts();
AudioMemory(AUDIO_MEM);
#ifdef DISPLAY_LCD_SPI
pinMode(SDCARD_CS_PIN, OUTPUT);
pinMode(U8X8_CS_PIN, OUTPUT);
#endif
#ifdef ENABLE_LCD_UI
setup_ui();
#endif
#ifdef DEBUG
#ifdef ENABLE_LCD_UI
setup_debug_message();
#endif
Serial.begin(SERIAL_SPEED);
#endif
#ifndef ENABLE_LCD_UI
#ifdef DEBUG
Serial.println(F("NO LCD DISPLAY ENABLED!"));
#endif
#endif
#ifdef DEBUG
generate_version_string(version_string, sizeof(version_string));
Serial.println(F("MicroDexed based on https://github.com/asb2m10/dexed"));
Serial.println(F("(c)2018-2020 H. Wirtz <wirtz@parasitstudio.de>"));
Serial.println(F("https://codeberg.org/dcoredump/MicroDexed"));
Serial.print(F("Version: "));
Serial.println(version_string);
Serial.print(F("CPU-Speed: "));
Serial.print(F_CPU / 1000000.0, 1);
Serial.println(F(" MHz"));
Serial.println(F("<setup start>"));
Serial.flush();
#endif
setup_midi_devices();
for (uint8_t instance_id = 0; instance_id < NUM_DEXED; instance_id++)
{
if (instance_id < MAX_DEXED)
{
#ifdef DEBUG
Serial.print(F("Creating MicroDexed instance "));
Serial.println(instance_id, DEC);
#endif
create_audio_engine_chain(instance_id);
}
else
{
#ifdef DEBUG
Serial.print(F("Ignoring instance "));
Serial.print(instance_id, DEC);
Serial.print(F(" (maximum allowed: "));
Serial.print(MAX_DEXED, DEC);
Serial.println(F(")"));
#endif
}
}
initial_values_from_eeprom(false);
#if defined(TEENSY_AUDIO_BOARD)
sgtl5000_1.enable();
sgtl5000_1.lineOutLevel(SGTL5000_LINEOUT_LEVEL);
sgtl5000_1.dacVolumeRamp();
sgtl5000_1.dacVolume(1.0);
//sgtl5000_1.dacVolumeRampLinear();
//sgtl5000_1.dacVolumeRampDisable();
sgtl5000_1.unmuteHeadphone();
sgtl5000_1.unmuteLineout();
sgtl5000_1.volume(SGTL5000_HEADPHONE_VOLUME, SGTL5000_HEADPHONE_VOLUME); // Headphone volume
#ifdef SGTL5000_AUDIO_ENHANCE
sgtl5000_1.audioPostProcessorEnable();
sgtl5000_1.enhanceBassEnable();
sgtl5000_1.enhanceBass(1.0, 1.5); // enhanceBass(1.0, 1.0, 1, 2); // Configures the bass enhancement by setting the levels of the original stereo signal and the bass-enhanced mono level which will be mixed together. The high-pass filter may be enabled (0) or bypassed (1).
sgtl5000_1.surroundSoundEnable();
sgtl5000_1.surroundSound(7, 3); // Configures virtual surround width from 0 (mono) to 7 (widest). select may be set to 1 (disable), 2 (mono input) or 3 (stereo input).
sgtl5000_1.autoVolumeEnable();
sgtl5000_1.autoVolumeControl(1, 1, 1, 0.9, 0.01, 0.05);
/* The cutoff frequency is specified as follows:
value frequency
0 80Hz
1 100Hz
2 125Hz
3 150Hz
4 175Hz
5 200Hz
6 225Hz
*/
//sgtl5000_1.eqBands(bass, mid_bass, midrange, mid_treble, treble);
#else
sgtl5000_1.autoVolumeDisable();
sgtl5000_1.surroundSoundDisable();
sgtl5000_1.enhanceBassDisable();
#endif
#ifdef DEBUG
Serial.println(F("Teensy-Audio-Board enabled."));
#endif
#elif defined(TGA_AUDIO_BOARD)
wm8731_1.enable();
wm8731_1.volume(1.0);
#ifdef DEBUG
Serial.println(F("TGA board enabled."));
#endif
#elif defined(I2S_AUDIO_ONLY)
#ifdef DEBUG
Serial.println(F("I2S enabled."));
#endif
#elif defined(PT8211_AUDIO)
#ifdef DEBUG
Serial.println(F("PT8211 enabled."));
#endif
#elif defined(TEENSY_DAC_SYMMETRIC)
invMixer.gain(0, -1.f);
#ifdef DEBUG
Serial.println(F("Internal DAC using symmetric outputs enabled."));
#endif
#else
#ifdef DEBUG
Serial.println(F("Internal DAC enabled."));
#endif
#endif
// start SD card
#ifdef DISPLAY_LCD_SPI
change_disp_sd(false);
#endif
sd_card = check_sd_cards();
if (sd_card < 1)
{
#ifdef DEBUG
Serial.println(F("SD card not accessable."));
#endif
}
else
{
check_and_create_directories();
for (uint8_t instance_id = 0; instance_id < NUM_DEXED; instance_id++)
{
// load default SYSEX data
load_sd_voice(configuration.performance.bank[instance_id], configuration.performance.voice[instance_id], instance_id);
memset(g_voice_name[instance_id], 0, VOICE_NAME_LEN);
memset(g_bank_name[instance_id], 0, BANK_NAME_LEN);
memset(receive_bank_filename, 0, FILENAME_LEN);
}
}
#ifdef DISPLAY_LCD_SPI
change_disp_sd(true);
#endif
#if defined(USE_FX)
// Init effects
for (uint8_t instance_id = 0; instance_id < NUM_DEXED; instance_id++)
{
memset(delayline, 0, sizeof(delayline[instance_id]));
if (!modchorus[instance_id]->begin(delayline[instance_id], MOD_DELAY_SAMPLE_BUFFER)) {
#ifdef DEBUG
Serial.print(F("AudioEffectModulatedDelay - begin failed ["));
Serial.print(instance_id);
Serial.println(F("]"));
#endif
while (1);
}
}
#ifdef DEBUG
Serial.print(F("MOD_DELAY_SAMPLE_BUFFER="));
Serial.print(MOD_DELAY_SAMPLE_BUFFER, DEC);
Serial.println(F(" samples"));
#endif
#endif
set_fx_params();
for (uint8_t instance_id = 0; instance_id < NUM_DEXED; instance_id++)
{
// INIT PEAK MIXER
microdexed_peak_mixer.gain(instance_id, 1.0);
// INIT DEXED VOLUME
dexed_level[instance_id]->gain(1.0);
// INIT DEXED VOICE CONFIG
set_voiceconfig_params(instance_id);
master_mixer_r.gain(instance_id, 1.0);
master_mixer_l.gain(instance_id, 1.0);
}
master_mixer_r.gain(3, pseudo_log_curve(configuration.fx.reverb_level / 100));
master_mixer_l.gain(3, pseudo_log_curve(configuration.fx.reverb_level / 100));
set_sys_params();
// Initialize processor and memory measurements
AudioProcessorUsageMaxReset();
AudioMemoryUsageMaxReset();
#ifdef DEBUG
for (uint8_t instance_id = 0; instance_id < NUM_DEXED; instance_id++)
{
Serial.print(F("Dexed instance "));
Serial.print(instance_id);
Serial.println(F(":"));
Serial.print(F("Bank/Voice from EEPROM ["));
Serial.print(configuration.performance.bank[instance_id], DEC);
Serial.print(F("/"));
Serial.print(configuration.performance.voice[instance_id], DEC);
Serial.println(F("]"));
Serial.print(F("Polyphony: "));
Serial.println(configuration.dexed[instance_id].polyphony, DEC);
}
Serial.print(F("AUDIO_BLOCK_SAMPLES="));
Serial.print(AUDIO_BLOCK_SAMPLES);
Serial.print(F(" (Time per block="));
Serial.print(1000000 / (SAMPLE_RATE / AUDIO_BLOCK_SAMPLES));
Serial.println(F("ms)"));
#endif
#if defined (DEBUG) && defined (SHOW_CPU_LOAD_MSEC)
show_cpu_and_mem_usage();
#endif
AudioInterrupts();
#ifdef DEBUG
Serial.println(F("<setup end>"));
#endif
LCDML.OTHER_jumpToFunc(UI_func_voice_select);
}
void loop()
{
// MIDI input handling
check_midi_devices();
// check encoder
ENCODER[ENC_L].update();
ENCODER[ENC_R].update();
#ifdef ENABLE_LCD_UI
LCDML.loop();
#endif
// CONTROL-RATE-EVENT-HANDLING
if (control_rate > CONTROL_RATE_MS)
{
control_rate = 0;
/*
// EEPROM update handling
if (autostore >= AUTOSTORE_MS && eeprom_update_flag == true)
{
// only store configuration data to EEPROM when AUTOSTORE_MS is reached and no voices are activated anymore
eeprom_update_sys();
}
*/
// check for value changes, unused voices and CPU overload
for (uint8_t instance_id = 0; instance_id < NUM_DEXED; instance_id++)
{
active_voices[instance_id] = MicroDexed[instance_id]->getNumNotesPlaying();
if (active_voices[instance_id] == 0)
midi_voices[instance_id] = 0;
#if defined(CPU_OVERLOAD_THROTTLE)
if (AudioProcessorUsageMax() > CPU_OVERLOAD_THROTTLE && cpu_overload_throttle_timer >= CPU_OVERLOAD_THROTTLE_TIMER)
{
cpu_overload_throttle_timer = 0;
AudioProcessorUsageMaxReset();
MicroDexed[instance_id]->keyup(-1); // kills the oldest note and decreases max_notes
#ifdef DEBUG
Serial.print(F("!!!CPU overload!!! Automatic throttling polyphony down to "));
Serial.print(MicroDexed[instance_id]->getMaxNotes(), DEC);
Serial.print(F(" for instance "));
Serial.print(instance_id, DEC);
Serial.println(F("."));
#endif
configuration.dexed[instance_id].polyphony = MicroDexed[instance_id]->getMaxNotes();
}
#endif
}
if (LCDML.FUNC_getID() == LCDML.OTHER_getIDFromFunction(UI_func_voice_select))
{
for (uint8_t instance_id = 0; instance_id < NUM_DEXED; instance_id++)
{
#ifdef TEENSY4
if (midi_decay_timer > MIDI_DECAY_TIMER && midi_decay[instance_id] > 0)
{
midi_decay[instance_id]--;
lcd.createChar(6 + instance_id, (uint8_t*)special_chars[15 - (7 - midi_decay[instance_id])]);
lcd.setCursor(14 + instance_id, 1);
lcd.write(6 + instance_id);
}
else if (midi_voices[instance_id] == 0 && midi_decay[instance_id] == 0)
{
midi_decay[instance_id]--;
lcd.setCursor(14 + instance_id, 1);
lcd.write(20); // blank
}
#else
static bool midi_playing[NUM_DEXED];
if (midi_decay_timer > MIDI_DECAY_TIMER && midi_voices[instance_id] > 0 && midi_playing[instance_id] == false)
{
midi_playing[instance_id] = true;
lcd.setCursor(14 + instance_id, 1);
lcd.write(6 + instance_id);
}
else if (midi_decay_timer > MIDI_DECAY_TIMER && midi_voices[instance_id] == 0)
{
midi_playing[instance_id] = false;
lcd.setCursor(14 + instance_id, 1);
lcd.write(20); // blank
}
#endif
}
if (midi_decay_timer > 250)
{
midi_decay_timer = 0;
}
}
}
else
yield();
#if defined (DEBUG) && defined (SHOW_CPU_LOAD_MSEC)
if (cpu_mem_millis >= SHOW_CPU_LOAD_MSEC)
{
if (master_peak_r.available())
if (master_peak_r.read() == 1.0)
peak_r++;
if (master_peak_l.available())
if (master_peak_l.read() == 1.0)
peak_l++;
if (microdexed_peak.available())
{
peak_dexed_value = microdexed_peak.read();
if (peak_dexed_value > 0.99)
peak_dexed++;
}
cpu_mem_millis -= SHOW_CPU_LOAD_MSEC;
show_cpu_and_mem_usage();
}
#endif
}
/******************************************************************************
MIDI MESSAGE HANDLER
******************************************************************************/
void handleNoteOn(byte inChannel, byte inNumber, byte inVelocity)
{
for (uint8_t instance_id = 0; instance_id < NUM_DEXED; instance_id++)
{
if (checkMidiChannel(inChannel, instance_id))
{
if (inNumber >= configuration.dexed[instance_id].lowest_note && inNumber <= configuration.dexed[instance_id].highest_note)
{
if (MicroDexed[instance_id]->getMaxNotes() > 0)
MicroDexed[instance_id]->keydown(inNumber, uint8_t(float(configuration.dexed[instance_id].velocity_level / 127.0)*inVelocity + 0.5));
midi_voices[instance_id]++;
if (LCDML.FUNC_getID() == LCDML.OTHER_getIDFromFunction(UI_func_voice_select))
{
midi_decay_timer = 0;
midi_decay[instance_id] = min(inVelocity / 5, 7);
}
#ifdef DEBUG
char note_name[4];
getNoteName(note_name, inNumber);
Serial.print(F("Keydown "));
Serial.print(note_name);
Serial.print(F(" instance "));
Serial.print(instance_id, DEC);
Serial.print(F(" MIDI-channel "));
Serial.print(inChannel, DEC);
Serial.println();
#endif
}
}
}
}
void handleNoteOff(byte inChannel, byte inNumber, byte inVelocity)
{
for (uint8_t instance_id = 0; instance_id < NUM_DEXED; instance_id++)
{
if (checkMidiChannel(inChannel, instance_id))
{
if (inNumber >= configuration.dexed[instance_id].lowest_note && inNumber <= configuration.dexed[instance_id].highest_note)
{
if (MicroDexed[instance_id]->getMaxNotes() > 0)
MicroDexed[instance_id]->keyup(inNumber);
midi_voices[instance_id]--;
#ifdef DEBUG
char note_name[4];
getNoteName(note_name, inNumber);
Serial.print(F("KeyUp "));
Serial.print(note_name);
Serial.print(F(" instance "));
Serial.print(instance_id, DEC);
Serial.print(F(" MIDI-channel "));
Serial.print(inChannel, DEC);
Serial.println();
#endif
}
}
}
}
void handleControlChange(byte inChannel, byte inCtrl, byte inValue)
{
inCtrl = constrain(inCtrl, 0, 127);
inValue = constrain(inValue, 0, 127);
for (uint8_t instance_id = 0; instance_id < NUM_DEXED; instance_id++)
{
if (checkMidiChannel(inChannel, instance_id))
{
#ifdef DEBUG
Serial.print(F("INSTANCE "));
Serial.print(instance_id, DEC);
Serial.print(F(": CC#"));
Serial.print(inCtrl, DEC);
Serial.print(F(":"));
Serial.println(inValue, DEC);
#endif
switch (inCtrl) {
case 0: // BankSelect MSB
#ifdef DEBUG
Serial.println(F("BANK-SELECT MSB CC"));
#endif
configuration.performance.bank[instance_id] = constrain((inValue << 7)&configuration.performance.bank[instance_id], 0, MAX_BANKS - 1);
load_sd_voice(configuration.performance.bank[instance_id], configuration.performance.voice[instance_id], instance_id);
if (LCDML.FUNC_getID() == LCDML.OTHER_getIDFromFunction(UI_func_voice_select))
{
LCDML.OTHER_updateFunc();
LCDML.loop_menu();
}
break;
case 1:
#ifdef DEBUG
Serial.println(F("MODWHEEL CC"));
#endif
MicroDexed[instance_id]->controllers.modwheel_cc = inValue;
MicroDexed[instance_id]->controllers.refresh();
break;
case 2:
#ifdef DEBUG
Serial.println(F("BREATH CC"));
#endif
MicroDexed[instance_id]->controllers.breath_cc = inValue;
//MicroDexed[instance_id]->controllers.breath_cc = 100 – BCrange + Output * BCrange * Bcvalue/100
MicroDexed[instance_id]->controllers.refresh();
break;
case 4:
#ifdef DEBUG
Serial.println(F("FOOT CC"));
#endif
MicroDexed[instance_id]->controllers.foot_cc = inValue;
MicroDexed[instance_id]->controllers.refresh();
break;
case 5: // Portamento time
configuration.dexed[instance_id].portamento_time = inValue;
MicroDexed[instance_id]->setPortamentoMode(configuration.dexed[instance_id].portamento_mode, configuration.dexed[instance_id].portamento_glissando, configuration.dexed[instance_id].portamento_time);
break;
case 7: // Instance Volume
#ifdef DEBUG
Serial.println(F("VOLUME CC"));
#endif
configuration.dexed[instance_id].sound_intensity = map(inValue, 0, 0x7f, SOUND_INTENSITY_MIN, SOUND_INTENSITY_MAX);
#ifdef USE_FX
MicroDexed[instance_id]->fx.Gain = mapfloat(configuration.dexed[instance_id].sound_intensity, SOUND_INTENSITY_MIN, SOUND_INTENSITY_MAX, 0.0, SOUND_INTENSITY_AMP_MAX);
#else
dexed_level[instance_id]->gain(pseudo_log_curve(mapfloat(configuration.dexed[instance_id].sound_intensity, SOUND_INTENSITY_MIN, SOUND_INTENSITY_MAX, 0.0, SOUND_INTENSITY_AMP_MAX)));
#endif
if (LCDML.FUNC_getID() == LCDML.OTHER_getIDFromFunction(UI_func_sound_intensity))
{
LCDML.OTHER_updateFunc();
LCDML.loop_menu();
}
break;
case 10: // Pan
#ifdef DEBUG
Serial.println(F("PANORAMA CC"));
#endif
configuration.dexed[instance_id].pan = map(inValue, 0, 0x7f, PANORAMA_MIN, PANORAMA_MAX);
mono2stereo[instance_id]->panorama(mapfloat(configuration.dexed[instance_id].pan, PANORAMA_MIN, PANORAMA_MAX, -1.0, 1.0));
if (LCDML.FUNC_getID() == LCDML.OTHER_getIDFromFunction(UI_func_panorama))
{
LCDML.OTHER_updateFunc();
LCDML.loop_menu();
}
break;
case 32: // BankSelect LSB
#ifdef DEBUG
Serial.println(F("BANK-SELECT LSB CC"));
#endif
configuration.performance.bank[instance_id] = constrain(inValue, 0, MAX_BANKS - 1);
load_sd_voice(configuration.performance.bank[instance_id], configuration.performance.voice[instance_id], instance_id);
if (LCDML.FUNC_getID() == LCDML.OTHER_getIDFromFunction(UI_func_voice_select))
{
LCDML.OTHER_updateFunc();
LCDML.loop_menu();
}
break;
case 64:
MicroDexed[instance_id]->setSustain(inValue > 63);
if (!MicroDexed[instance_id]->getSustain())
{
for (uint8_t note = 0; note < MicroDexed[instance_id]->getMaxNotes(); note++)
{
if (MicroDexed[instance_id]->voices[note].sustained && !MicroDexed[instance_id]->voices[note].keydown)
{
MicroDexed[instance_id]->voices[note].dx7_note->keyup();
MicroDexed[instance_id]->voices[note].sustained = false;
}
}
}
break;
case 65:
MicroDexed[instance_id]->setPortamentoMode(configuration.dexed[instance_id].portamento_mode, configuration.dexed[instance_id].portamento_glissando, configuration.dexed[instance_id].portamento_time);
if (LCDML.FUNC_getID() == LCDML.OTHER_getIDFromFunction(UI_func_portamento_mode))
{
LCDML.OTHER_updateFunc();
LCDML.loop_menu();
}
break;
#if defined(USE_FX)
case 103: // CC 103: filter resonance
configuration.dexed[instance_id].filter_resonance = map(inValue, 0, 0x7f, FILTER_RESONANCE_MIN, FILTER_RESONANCE_MAX);
MicroDexed[instance_id]->fx.Reso = mapfloat(configuration.dexed[instance_id].filter_resonance, FILTER_RESONANCE_MIN, FILTER_RESONANCE_MAX, 1.0, 0.0);
if (LCDML.FUNC_getID() == LCDML.OTHER_getIDFromFunction(UI_func_filter_resonance))
{
LCDML.OTHER_updateFunc();
LCDML.loop_menu();
}
break;
case 104: // CC 104: filter cutoff
configuration.dexed[instance_id].filter_cutoff = map(inValue, 0, 0x7f, FILTER_CUTOFF_MIN, FILTER_CUTOFF_MAX);
MicroDexed[instance_id]->fx.Cutoff = mapfloat(configuration.dexed[instance_id].filter_cutoff, FILTER_CUTOFF_MIN, FILTER_CUTOFF_MAX, 1.0, 0.0);
if (LCDML.FUNC_getID() == LCDML.OTHER_getIDFromFunction(UI_func_filter_cutoff))
{
LCDML.OTHER_updateFunc();
LCDML.loop_menu();
}
break;
case 105: // CC 105: delay time
configuration.fx.delay_time[instance_id] = map(inValue, 0, 0x7f, DELAY_TIME_MIN, DELAY_TIME_MAX);
delay_fx[instance_id]->delay(0, constrain(configuration.fx.delay_time[instance_id] * 10, DELAY_TIME_MIN * 10, DELAY_TIME_MAX * 10));
if (LCDML.FUNC_getID() == LCDML.OTHER_getIDFromFunction(UI_func_delay_time))
{
LCDML.OTHER_updateFunc();
LCDML.loop_menu();
}
case 106: // CC 106: delay feedback
configuration.fx.delay_feedback[instance_id] = map(inValue, 0, 0x7f, DELAY_FEEDBACK_MIN , DELAY_FEEDBACK_MAX);
delay_fb_mixer[instance_id]->gain(1, pseudo_log_curve(mapfloat(configuration.fx.delay_feedback[instance_id], DELAY_FEEDBACK_MIN, DELAY_FEEDBACK_MAX, 0.0, 1.0))); // amount of feedback
if (LCDML.FUNC_getID() == LCDML.OTHER_getIDFromFunction(UI_func_delay_feedback))
{
LCDML.OTHER_updateFunc();
LCDML.loop_menu();
}
break;
case 107: // CC 107: delay volume
configuration.fx.delay_level[instance_id] = map(inValue, 0, 0x7f, DELAY_SEND_MIN, DELAY_SEND_MAX);
delay_mixer[instance_id]->gain(1, pseudo_log_curve(mapfloat(configuration.fx.delay_level[instance_id], DELAY_LEVEL_MIN, DELAY_LEVEL_MAX, 0.0, 1.0)));
if (LCDML.FUNC_getID() == LCDML.OTHER_getIDFromFunction(UI_func_delay_level))
{
LCDML.OTHER_updateFunc();
LCDML.loop_menu();
}
break;
#endif
case 120:
MicroDexed[instance_id]->panic();
break;
case 121:
MicroDexed[instance_id]->resetControllers();
break;
case 123:
MicroDexed[instance_id]->notesOff();
break;
case 126:
MicroDexed[instance_id]->setMonoMode(true);
break;
case 127:
MicroDexed[instance_id]->setMonoMode(false);
break;
}
}
}
}
void handleAfterTouch(byte inChannel, byte inPressure)
{
for (uint8_t instance_id = 0; instance_id < NUM_DEXED; instance_id++)
{
if (checkMidiChannel(inChannel, instance_id))
{
MicroDexed[instance_id]->controllers.aftertouch_cc = inPressure;
MicroDexed[instance_id]->controllers.refresh();
}
}
}
void handlePitchBend(byte inChannel, int inPitch)
{
for (uint8_t instance_id = 0; instance_id < NUM_DEXED; instance_id++)
{
if (checkMidiChannel(inChannel, instance_id))
{
MicroDexed[instance_id]->controllers.values_[kControllerPitch] = inPitch + 0x2000; // -8192 to +8191 --> 0 to 16383
}
}
}
void handleProgramChange(byte inChannel, byte inProgram)
{
for (uint8_t instance_id = 0; instance_id < NUM_DEXED; instance_id++)
{
if (checkMidiChannel(inChannel, instance_id))
{
configuration.performance.voice[instance_id] = constrain(inProgram, 0, MAX_VOICES - 1);
#ifdef DISPLAY_LCD_SPI
change_disp_sd(false);
#endif
load_sd_voice(configuration.performance.bank[instance_id], configuration.performance.voice[instance_id], instance_id);
#ifdef DISPLAY_LCD_SPI
change_disp_sd(true);
#endif
if (LCDML.FUNC_getID() == LCDML.OTHER_getIDFromFunction(UI_func_voice_select))
{
LCDML.OTHER_updateFunc();
LCDML.loop_menu();
}
}
}
}
void handleSystemExclusive(byte * sysex, uint len)
{
for (uint8_t instance_id = 0; instance_id < NUM_DEXED; instance_id++)
{
if (!checkMidiChannel((sysex[2] & 0x0f) + 1 , instance_id))
{
#ifdef DEBUG
Serial.print(F("INSTANCE "));
Serial.print(instance_id, DEC);
Serial.println(F(": SYSEX-MIDI-Channel mismatch"));
#endif
return;
}
#ifdef DEBUG
Serial.print(F("SysEx data length: ["));
Serial.print(len);
Serial.println(F("]"));
Serial.println(F("SysEx data:"));
for (uint16_t i = 0; i < len; i++)
{
Serial.print(F("[0x"));
uint8_t s = sysex[i];
if (s < 16)
Serial.print(F("0"));
Serial.print(s, HEX);
Serial.print(F("|"));
if (s < 100)
Serial.print(F("0"));
if (s < 10)
Serial.print(F("0"));
Serial.print(s, DEC);
Serial.print(F("]"));
if ((i + 1) % 16 == 0)
Serial.println();
}
Serial.println();
#endif
// Check for SYSEX end byte
if (sysex[len - 1] != 0xf7)
{
#ifdef DEBUG
Serial.println(F("E: SysEx end status byte not detected."));
#endif
return;
}
if (sysex[1] != 0x43) // check for Yamaha sysex
{
#ifdef DEBUG
Serial.println(F("E: SysEx vendor not Yamaha."));
#endif
return;
}
#ifdef DEBUG
Serial.print(F("Substatus: ["));
Serial.print((sysex[2] & 0x70) >> 4);
Serial.println(F("]"));
#endif
// parse parameter change
if (len == 7)
{
if (((sysex[3] & 0x7c) >> 2) != 0 && ((sysex[3] & 0x7c) >> 2) != 2)
{
#ifdef DEBUG
Serial.println(F("E: Not a SysEx parameter or function parameter change."));
#endif
return;
}
sysex[4] &= 0x7f;
sysex[5] &= 0x7f;
if ((sysex[3] & 0x7c) >> 2 == 0)
{
#ifdef DEBUG
Serial.println(F("SysEx Voice parameter:"));
Serial.print("Parameter #");
Serial.print(sysex[4] + ((sysex[3] & 0x03) * 128), DEC);
Serial.print(" Value: ");
Serial.println(sysex[5], DEC);
#endif
MicroDexed[instance_id]->data[sysex[4] + ((sysex[3] & 0x03) * 128)] = sysex[5];
}
else if ((sysex[3] & 0x7c) >> 2 == 2)
{
#ifdef DEBUG
Serial.println(F("SysEx Function parameter:"));
Serial.print("Parameter #");
Serial.print(sysex[4], DEC);
Serial.print(" Value: ");
Serial.println(sysex[5], DEC);
#endif
switch (sysex[4])
{
case 65:
configuration.dexed[instance_id].pb_range = constrain(sysex[5], PB_RANGE_MIN, PB_RANGE_MAX);
MicroDexed[instance_id]->controllers.values_[kControllerPitchRange] = configuration.dexed[instance_id].pb_range;
if (LCDML.FUNC_getID() == LCDML.OTHER_getIDFromFunction(UI_func_pb_range))
{
LCDML.OTHER_updateFunc();
LCDML.loop_menu();
}
break;
case 66:
configuration.dexed[instance_id].pb_step = constrain(sysex[5], PB_STEP_MIN, PB_STEP_MAX);
MicroDexed[instance_id]->controllers.values_[kControllerPitchStep] = configuration.dexed[instance_id].pb_step;
if (LCDML.FUNC_getID() == LCDML.OTHER_getIDFromFunction(UI_func_pb_step))
{
LCDML.OTHER_updateFunc();
LCDML.loop_menu();
}
break;
case 67:
configuration.dexed[instance_id].portamento_mode = constrain(sysex[5], PORTAMENTO_MODE_MIN, PORTAMENTO_MODE_MAX);
MicroDexed[instance_id]->setPortamentoMode(configuration.dexed[instance_id].portamento_mode, configuration.dexed[instance_id].portamento_glissando, configuration.dexed[instance_id].portamento_time);
if (LCDML.FUNC_getID() == LCDML.OTHER_getIDFromFunction(UI_func_portamento_mode))
{
LCDML.OTHER_updateFunc();
LCDML.loop_menu();
}
break;
case 68:
configuration.dexed[instance_id].portamento_glissando = constrain(sysex[5], PORTAMENTO_GLISSANDO_MIN, PORTAMENTO_GLISSANDO_MAX);
MicroDexed[instance_id]->setPortamentoMode(configuration.dexed[instance_id].portamento_mode, configuration.dexed[instance_id].portamento_glissando, configuration.dexed[instance_id].portamento_time);
if (LCDML.FUNC_getID() == LCDML.OTHER_getIDFromFunction(UI_func_portamento_glissando))
{
LCDML.OTHER_updateFunc();
LCDML.loop_menu();
}
break;
case 69:
configuration.dexed[instance_id].portamento_time = constrain(sysex[5], PORTAMENTO_TIME_MIN, PORTAMENTO_TIME_MAX);
MicroDexed[instance_id]->setPortamentoMode(configuration.dexed[instance_id].portamento_mode, configuration.dexed[instance_id].portamento_glissando, configuration.dexed[instance_id].portamento_time);
if (LCDML.FUNC_getID() == LCDML.OTHER_getIDFromFunction(UI_func_portamento_time))
{
LCDML.OTHER_updateFunc();
LCDML.loop_menu();
}
break;
case 70:
configuration.dexed[instance_id].mw_range = constrain(sysex[5], MW_RANGE_MIN, MW_RANGE_MAX);
MicroDexed[instance_id]->controllers.wheel.setRange(configuration.dexed[instance_id].mw_range);
if (LCDML.FUNC_getID() == LCDML.OTHER_getIDFromFunction(UI_func_mw_range))
{
LCDML.OTHER_updateFunc();
LCDML.loop_menu();
}
break;
case 71:
configuration.dexed[instance_id].mw_assign = constrain(sysex[5], MW_ASSIGN_MIN, MW_ASSIGN_MAX);
MicroDexed[instance_id]->controllers.wheel.setTarget(configuration.dexed[instance_id].mw_assign);
if (LCDML.FUNC_getID() == LCDML.OTHER_getIDFromFunction(UI_func_mw_assign))
{
LCDML.OTHER_updateFunc();
LCDML.loop_menu();
}
break;
case 72:
configuration.dexed[instance_id].fc_range = constrain(sysex[5], FC_RANGE_MIN, FC_RANGE_MAX);
MicroDexed[instance_id]->controllers.foot.setRange(configuration.dexed[instance_id].fc_range);
if (LCDML.FUNC_getID() == LCDML.OTHER_getIDFromFunction(UI_func_fc_range))
{
LCDML.OTHER_updateFunc();
LCDML.loop_menu();
}
break;
case 73:
configuration.dexed[instance_id].fc_assign = constrain(sysex[5], FC_ASSIGN_MIN, FC_ASSIGN_MAX);
MicroDexed[instance_id]->controllers.foot.setTarget(configuration.dexed[instance_id].fc_assign);
if (LCDML.FUNC_getID() == LCDML.OTHER_getIDFromFunction(UI_func_fc_assign))
{
LCDML.OTHER_updateFunc();
LCDML.loop_menu();
}
break;
case 74:
configuration.dexed[instance_id].bc_range = constrain(sysex[5], BC_RANGE_MIN, BC_RANGE_MAX);
MicroDexed[instance_id]->controllers.breath.setRange(configuration.dexed[instance_id].bc_range);
if (LCDML.FUNC_getID() == LCDML.OTHER_getIDFromFunction(UI_func_bc_range))
{
LCDML.OTHER_updateFunc();
LCDML.loop_menu();
}
break;
case 75:
configuration.dexed[instance_id].bc_assign = constrain(sysex[5], BC_ASSIGN_MIN, BC_ASSIGN_MAX);
MicroDexed[instance_id]->controllers.breath.setTarget(configuration.dexed[instance_id].bc_assign);
if (LCDML.FUNC_getID() == LCDML.OTHER_getIDFromFunction(UI_func_bc_assign))
{
LCDML.OTHER_updateFunc();
LCDML.loop_menu();
}
break;
case 76:
configuration.dexed[instance_id].at_range = constrain(sysex[5], AT_RANGE_MIN, AT_RANGE_MAX);
MicroDexed[instance_id]->controllers.at.setRange(configuration.dexed[instance_id].at_range);
if (LCDML.FUNC_getID() == LCDML.OTHER_getIDFromFunction(UI_func_at_range))
{
LCDML.OTHER_updateFunc();
LCDML.loop_menu();
}
break;
case 77:
configuration.dexed[instance_id].at_assign = constrain(sysex[5], AT_ASSIGN_MIN, AT_ASSIGN_MAX);
MicroDexed[instance_id]->controllers.at.setTarget(configuration.dexed[instance_id].at_assign);
if (LCDML.FUNC_getID() == LCDML.OTHER_getIDFromFunction(UI_func_at_assign))
{
LCDML.OTHER_updateFunc();
LCDML.loop_menu();
}
break;
default:
MicroDexed[instance_id]->data[sysex[4]] = sysex[5]; // set function parameter
break;
}
MicroDexed[instance_id]->controllers.refresh();
}
#ifdef DEBUG
else
{
Serial.println(F("E: Unknown SysEx voice or function."));
}
#endif
}
else if (len == 163)
{
int32_t bulk_checksum_calc = 0;
int8_t bulk_checksum = sysex[161];
// 1 Voice bulk upload
#ifdef DEBUG
Serial.println(F("One Voice bulk upload"));
#endif
if ((sysex[3] & 0x7f) != 0)
{
#ifdef DEBUG
Serial.println(F("E: Not a SysEx voice bulk upload."));
#endif
return;
}
if (((sysex[4] << 7) | sysex[5]) != 0x9b)
{
#ifdef DEBUG
Serial.println(F("E: Wrong length for SysEx voice bulk upload (not 155)."));
#endif
return;
}
// checksum calculation
for (uint8_t i = 0; i < 155 ; i++)
{
bulk_checksum_calc -= sysex[i + 6];
}
bulk_checksum_calc &= 0x7f;
if (bulk_checksum_calc != bulk_checksum)
{
#ifdef DEBUG
Serial.print(F("E: Checksum error for one voice [0x"));
Serial.print(bulk_checksum, HEX);
Serial.print(F("/0x"));
Serial.print(bulk_checksum_calc, HEX);
Serial.println(F("]"));
#endif
return;
}
// fix voice name
for (uint8_t i = 0; i < 10; i++)
{
if (sysex[151 + i] > 126) // filter characters
sysex[151 + i] = 32;
}
// load sysex-data into voice memory
MicroDexed[instance_id]->loadVoiceParameters(&sysex[6]);
#ifdef DEBUG
show_patch(instance_id);
#endif
// show voice name
strncpy(g_voice_name[instance_id], (char*)&sysex[151], VOICE_NAME_LEN - 1);
if (LCDML.FUNC_getID() == LCDML.OTHER_getIDFromFunction(UI_func_voice_select))
{
LCDML.OTHER_updateFunc();
LCDML.loop_menu();
}
}
else if (len == 4104 && strlen(receive_bank_filename) > 0)
{
int32_t bulk_checksum_calc = 0;
int8_t bulk_checksum = sysex[4102];
// 1 Voice bulk upload
#ifdef DEBUG
Serial.println(F("Bank bulk upload"));
#endif
if ((sysex[3] & 0x7f) != 9)
{
#ifdef DEBUG
Serial.println(F("E: Not a SysEx bank bulk upload."));
#endif
return;
}
if (((sysex[4] << 7) | sysex[5]) != 0x1000)
{
#ifdef DEBUG
Serial.println(F("E: Wrong length for SysEx bank bulk upload (not 4096)."));
#endif
return;
}
// checksum calculation
for (uint8_t i = 0; i < 4096 ; i++)
{
bulk_checksum_calc -= sysex[i + 6];
}
bulk_checksum_calc &= 0x7f;
if (bulk_checksum_calc != bulk_checksum)
{
#ifdef DEBUG
Serial.print(F("E: Checksum error for bank [0x"));
Serial.print(bulk_checksum, HEX);
Serial.print(F("/0x"));
Serial.print(bulk_checksum_calc, HEX);
Serial.println(F("]"));
#endif
return;
}
#ifdef DEBUG
if (save_sd_bank(receive_bank_filename, sysex))
{
Serial.print(F("Bank saved as ["));
Serial.print(receive_bank_filename);
Serial.println(F("]"));
}
else
{
Serial.println(F("Error during saving bank as ["));
Serial.print(receive_bank_filename);
Serial.println(F("]"));
}
#else
save_sd_bank(receive_bank_filename, sysex);
#endif
memset(receive_bank_filename, 0, FILENAME_LEN);
}
#ifdef DEBUG
else
Serial.println(F("E: SysEx parameter length wrong."));
#endif
}
}
void handleTimeCodeQuarterFrame(byte data)
{
;
}
void handleAfterTouchPoly(byte inChannel, byte inNumber, byte inVelocity)
{
;
}
void handleSongSelect(byte inSong)
{
;
}
void handleTuneRequest(void)
{
;
}
void handleClock(void)
{
midi_timing_counter++;
if (midi_timing_counter % 24 == 0)
{
midi_timing_quarter = midi_timing_timestep;
midi_timing_counter = 0;
midi_timing_timestep = 0;
// Adjust delay control here
#ifdef DEBUG
Serial.print(F("MIDI Clock: "));
Serial.print(60000 / midi_timing_quarter, DEC);
Serial.print(F("bpm ("));
Serial.print(midi_timing_quarter, DEC);
Serial.println(F("ms per quarter)"));
#endif
}
}
void handleStart(void)
{
;
}
void handleContinue(void)
{
;
}
void handleStop(void)
{
;
}
void handleActiveSensing(void)
{
;
}
void handleSystemReset(void)
{
for (uint8_t instance_id = 0; instance_id < NUM_DEXED; instance_id++)
{
#ifdef DEBUG
Serial.println(F("MIDI SYSEX RESET"));
#endif
MicroDexed[instance_id]->notesOff();
MicroDexed[instance_id]->panic();
MicroDexed[instance_id]->resetControllers();
}
}
/******************************************************************************
MIDI HELPER
******************************************************************************/
bool checkMidiChannel(byte inChannel, uint8_t instance_id)
{
// check for MIDI channel
if (configuration.dexed[instance_id].midi_channel == MIDI_CHANNEL_OMNI)
{
return (true);
}
else if (inChannel != configuration.dexed[instance_id].midi_channel)
{
#ifdef DEBUG
Serial.print(F("INSTANCE "));
Serial.print(instance_id, DEC);
Serial.print(F(": Ignoring MIDI data on channel "));
Serial.print(inChannel);
Serial.print(F("(listening on "));
Serial.print(configuration.dexed[instance_id].midi_channel);
Serial.println(F(")"));
#endif
return (false);
}
return (true);
}
/******************************************************************************
VOLUME HELPER
******************************************************************************/
void set_volume(uint8_t v, uint8_t m)
{
configuration.sys.vol = v;
if (configuration.sys.vol > 100)
configuration.sys.vol = 100;
configuration.sys.mono = m;
#ifdef DEBUG
Serial.print(F("Setting volume: VOL="));
Serial.println(v, DEC);
#endif
volume_r.gain(pseudo_log_curve(v / 100.0));
volume_l.gain(pseudo_log_curve(v / 100.0));
switch (m)
{
case 0: // stereo
stereo2mono.stereo(true);
for (uint8_t instance_id = 0; instance_id < NUM_DEXED; instance_id++)
mono2stereo[instance_id]->panorama(mapfloat(configuration.dexed[instance_id].pan, PANORAMA_MIN, PANORAMA_MAX, -1.0, 1.0));
break;
case 1: // mono both
stereo2mono.stereo(false);
for (uint8_t instance_id = 0; instance_id < NUM_DEXED; instance_id++)
mono2stereo[instance_id]->panorama(mapfloat(PANORAMA_DEFAULT, PANORAMA_MIN, PANORAMA_MAX, -1.0, 1.0));
break;
case 2: // mono right
volume_l.gain(0.0);
stereo2mono.stereo(false);
for (uint8_t instance_id = 0; instance_id < NUM_DEXED; instance_id++)
mono2stereo[instance_id]->panorama(mapfloat(PANORAMA_MAX, PANORAMA_MIN, PANORAMA_MAX, -1.0, 1.0));
break;
case 3: // mono left
volume_r.gain(0.0);
stereo2mono.stereo(false);
for (uint8_t instance_id = 0; instance_id < NUM_DEXED; instance_id++)
mono2stereo[instance_id]->panorama(mapfloat(PANORAMA_MIN, PANORAMA_MIN, PANORAMA_MAX, -1.0, 1.0));
break;
}
}
/******************************************************************************
EEPROM HELPER
******************************************************************************/
void initial_values_from_eeprom(bool init)
{
uint32_t _m_;
EEPROM.get(EEPROM_START_ADDRESS + offsetof(configuration_s, _marker_), _m_);
if (_m_ != EEPROM_MARKER)
{
#ifdef DEBUG
Serial.println(F("Found wrong EEPROM marker, initializing EEPROM..."));
#endif
init = true;
configuration._marker_ = EEPROM_MARKER;
}
if (init == true)
init_configuration();
else
{
#ifdef DEBUG
Serial.println(F("Loading inital system data from EEPROM."));
#endif
eeprom_get_performance();
eeprom_get_sys();
eeprom_get_fx();
for (uint8_t i = 0; i < NUM_DEXED; i++)
{
eeprom_get_dexed(i);
}
#ifdef DEBUG
show_configuration();
#endif
check_configuration();
for (uint8_t instance_id = 0; instance_id < NUM_DEXED; instance_id++)
{
MicroDexed[instance_id]->setPBController(configuration.dexed[instance_id].pb_range, configuration.dexed[instance_id].pb_step);
MicroDexed[instance_id]->setMWController(configuration.dexed[instance_id].mw_range, configuration.dexed[instance_id].mw_assign, configuration.dexed[instance_id].mw_mode);
MicroDexed[instance_id]->setFCController(configuration.dexed[instance_id].fc_range, configuration.dexed[instance_id].fc_assign, configuration.dexed[instance_id].fc_mode);
MicroDexed[instance_id]->setBCController(configuration.dexed[instance_id].bc_range, configuration.dexed[instance_id].bc_assign, configuration.dexed[instance_id].bc_mode);
MicroDexed[instance_id]->setATController(configuration.dexed[instance_id].at_range, configuration.dexed[instance_id].at_assign, configuration.dexed[instance_id].at_mode);
MicroDexed[instance_id]->controllers.refresh();
MicroDexed[instance_id]->setOPs(configuration.dexed[instance_id].op_enabled);
MicroDexed[instance_id]->doRefreshVoice();
MicroDexed[instance_id]->setMaxNotes(configuration.dexed[instance_id].polyphony);
MicroDexed[instance_id]->setMonoMode(configuration.sys.mono);
#if defined(USE_FX)
//chorus_mixer[instance_id]->gain(0, 1.0 - pseudo_log_curve(mapfloat(configuration.fx.chorus_level[instance_id], CHORUS_LEVEL_MIN, CHORUS_LEVEL_MAX, 0.0, 1.0)));
//chorus_mixer[instance_id]->gain(1, pseudo_log_curve(mapfloat(configuration.fx.chorus_level[instance_id], CHORUS_LEVEL_MIN, CHORUS_LEVEL_MAX, 0.0, 1.0)));
//chorus_mixer[instance_id]->gain(0, 1.0 - mapfloat(configuration.fx.chorus_level[instance_id], CHORUS_LEVEL_MIN, CHORUS_LEVEL_MAX, 0.0, 0.5));
chorus_mixer[instance_id]->gain(1, pseudo_log_curve(mapfloat(configuration.fx.chorus_level[instance_id], CHORUS_LEVEL_MIN, CHORUS_LEVEL_MAX, 0.0, 0.5)));
delay_mixer[instance_id]->gain(0, 1.0);
delay_mixer[instance_id]->gain(1, pseudo_log_curve(mapfloat(configuration.fx.delay_level[instance_id], DELAY_LEVEL_MIN, DELAY_LEVEL_MAX, 0.0, 1.0)));
delay_fb_mixer[instance_id]->gain(0, 1.0);
delay_fb_mixer[instance_id]->gain(1, pseudo_log_curve(mapfloat(configuration.fx.delay_feedback[instance_id], DELAY_FEEDBACK_MIN, DELAY_FEEDBACK_MAX, 0.0, 1.0)));
// MicroDexed[instance_id]->fx.Gain = configuration.dexed[instance_id].sound_intensity / 100.0;
MicroDexed[instance_id]->fx.Gain = 1.0;
MicroDexed[instance_id]->fx.Reso = mapfloat(configuration.dexed[instance_id].filter_resonance, FILTER_RESONANCE_MIN, FILTER_RESONANCE_MAX, 1.0, 0.0);
MicroDexed[instance_id]->fx.Cutoff = mapfloat(configuration.dexed[instance_id].filter_cutoff, FILTER_CUTOFF_MIN, FILTER_CUTOFF_MAX, 1.0, 0.0);
reverb_mixer_r.gain(instance_id, pseudo_log_curve(configuration.fx.reverb_send[instance_id] / 100.0));
reverb_mixer_l.gain(instance_id, pseudo_log_curve(configuration.fx.reverb_send[instance_id] / 100.0));
#endif
dexed_level[instance_id]->gain(pseudo_log_curve(mapfloat(configuration.dexed[instance_id].sound_intensity, SOUND_INTENSITY_MIN, SOUND_INTENSITY_MAX, 0.0, SOUND_INTENSITY_AMP_MAX)));
set_voiceconfig_params(instance_id);
}
set_sys_params();
set_fx_params();
set_volume(configuration.sys.vol, configuration.sys.mono);
#ifdef DEBUG
Serial.println(F("OK, loaded!"));
#endif
}
#ifdef DEBUG
show_configuration();
#endif
}
void check_configuration(void)
{
configuration.sys.instances = constrain(configuration.sys.instances, INSTANCES_MIN, INSTANCES_MAX);
configuration.sys.vol = constrain(configuration.sys.vol, VOLUME_MIN, VOLUME_MAX);
configuration.sys.mono = constrain(configuration.sys.mono, MONO_MIN, MONO_MAX);
configuration.sys.soft_midi_thru = constrain(configuration.sys.soft_midi_thru, SOFT_MIDI_THRU_MIN, SOFT_MIDI_THRU_MAX);
configuration.sys.performance_number = constrain(configuration.sys.performance_number, PERFORMANCE_NUM_MIN, PERFORMANCE_NUM_MAX);
configuration.performance.fx_number = constrain(configuration.performance.fx_number, FX_NUM_MIN, FX_NUM_MAX);
configuration.fx.reverb_roomsize = constrain(configuration.fx.reverb_roomsize, REVERB_ROOMSIZE_MIN, REVERB_ROOMSIZE_MAX);
configuration.fx.reverb_damping = constrain(configuration.fx.reverb_damping, REVERB_DAMPING_MIN, REVERB_DAMPING_MAX);
configuration.fx.reverb_level = constrain(configuration.fx.reverb_level, REVERB_LEVEL_MIN, REVERB_LEVEL_MAX);
for (uint8_t instance_id = 0; instance_id < NUM_DEXED; instance_id++)
{
configuration.performance.bank[instance_id] = constrain(configuration.performance.bank[instance_id], 0, MAX_BANKS - 1);
configuration.performance.voice[instance_id] = constrain(configuration.performance.voice[instance_id], 0, MAX_VOICES - 1);
configuration.performance.voiceconfig_number[instance_id] = constrain(configuration.performance.voiceconfig_number[instance_id], VOICECONFIG_NUM_MIN, VOICECONFIG_NUM_MAX);
configuration.dexed[instance_id].midi_channel = constrain(configuration.dexed[instance_id].midi_channel, MIDI_CHANNEL_MIN, MIDI_CHANNEL_MAX);
configuration.dexed[instance_id].lowest_note = constrain(configuration.dexed[instance_id].lowest_note, INSTANCE_LOWEST_NOTE_MIN, INSTANCE_LOWEST_NOTE_MAX);
configuration.dexed[instance_id].highest_note = constrain(configuration.dexed[instance_id].highest_note, INSTANCE_HIGHEST_NOTE_MIN, INSTANCE_HIGHEST_NOTE_MAX);
configuration.dexed[instance_id].filter_cutoff = constrain(configuration.dexed[instance_id].filter_cutoff, FILTER_CUTOFF_MIN, FILTER_CUTOFF_MAX);
configuration.dexed[instance_id].filter_resonance = constrain(configuration.dexed[instance_id].filter_resonance, FILTER_RESONANCE_MIN, FILTER_RESONANCE_MAX);
configuration.dexed[instance_id].sound_intensity = constrain(configuration.dexed[instance_id].sound_intensity, SOUND_INTENSITY_MIN, SOUND_INTENSITY_MAX);
configuration.dexed[instance_id].pan = constrain(configuration.dexed[instance_id].pan, PANORAMA_MIN, PANORAMA_MAX);
configuration.dexed[instance_id].transpose = constrain(configuration.dexed[instance_id].transpose, TRANSPOSE_MIN, TRANSPOSE_MAX);
configuration.dexed[instance_id].tune = constrain(configuration.dexed[instance_id].tune, TUNE_MIN, TUNE_MAX);
#if NUM_DEXED > 1
configuration.dexed[instance_id].polyphony = constrain(configuration.dexed[instance_id].polyphony, POLYPHONY_MIN, POLYPHONY_MAX / 2);
#else
configuration.dexed[instance_id].polyphony = constrain(configuration.dexed[instance_id].polyphony, POLYPHONY_MIN, POLYPHONY_MAX);
#endif
configuration.dexed[instance_id].velocity_level = constrain(configuration.dexed[instance_id].velocity_level, VELOCITY_LEVEL_MIN, VELOCITY_LEVEL_MAX);
configuration.dexed[instance_id].engine = constrain(configuration.dexed[instance_id].engine, ENGINE_MIN, ENGINE_MAX);
configuration.dexed[instance_id].monopoly = constrain(configuration.dexed[instance_id].monopoly, MONOPOLY_MIN, MONOPOLY_MAX);
configuration.dexed[instance_id].note_refresh = constrain(configuration.dexed[instance_id].note_refresh, NOTE_REFRESH_MIN, NOTE_REFRESH_MAX);
configuration.dexed[instance_id].pb_range = constrain(configuration.dexed[instance_id].pb_range, PB_RANGE_MIN, PB_RANGE_MAX);
configuration.dexed[instance_id].pb_step = constrain(configuration.dexed[instance_id].pb_step, PB_STEP_MIN, PB_STEP_MAX);
configuration.dexed[instance_id].mw_range = constrain(configuration.dexed[instance_id].mw_range, MW_RANGE_MIN, MW_RANGE_MAX);
configuration.dexed[instance_id].mw_assign = constrain(configuration.dexed[instance_id].mw_assign, MW_ASSIGN_MIN, MW_ASSIGN_MAX);
configuration.dexed[instance_id].mw_mode = constrain(configuration.dexed[instance_id].mw_mode, MW_MODE_MIN, MW_MODE_MAX);
configuration.dexed[instance_id].fc_range = constrain(configuration.dexed[instance_id].fc_range, FC_RANGE_MIN, FC_RANGE_MAX);
configuration.dexed[instance_id].fc_assign = constrain(configuration.dexed[instance_id].fc_assign, FC_ASSIGN_MIN, FC_ASSIGN_MAX);
configuration.dexed[instance_id].fc_mode = constrain(configuration.dexed[instance_id].fc_mode, FC_MODE_MIN, FC_MODE_MAX);
configuration.dexed[instance_id].bc_range = constrain(configuration.dexed[instance_id].bc_range, BC_RANGE_MIN, BC_RANGE_MAX);
configuration.dexed[instance_id].bc_assign = constrain(configuration.dexed[instance_id].bc_assign, BC_ASSIGN_MIN, BC_ASSIGN_MAX);
configuration.dexed[instance_id].bc_mode = constrain(configuration.dexed[instance_id].bc_mode, BC_MODE_MIN, BC_MODE_MAX);
configuration.dexed[instance_id].at_range = constrain(configuration.dexed[instance_id].at_range, AT_RANGE_MIN, AT_RANGE_MAX);
configuration.dexed[instance_id].at_assign = constrain(configuration.dexed[instance_id].at_assign, AT_ASSIGN_MIN, AT_ASSIGN_MAX);
configuration.dexed[instance_id].at_mode = constrain(configuration.dexed[instance_id].at_mode, AT_MODE_MIN, AT_MODE_MAX);
configuration.dexed[instance_id].portamento_mode = constrain(configuration.dexed[instance_id].portamento_mode, PORTAMENTO_MODE_MIN, PORTAMENTO_MODE_MAX);
configuration.dexed[instance_id].portamento_glissando = constrain(configuration.dexed[instance_id].portamento_glissando, PORTAMENTO_GLISSANDO_MIN, PORTAMENTO_GLISSANDO_MAX);
configuration.dexed[instance_id].portamento_time = constrain(configuration.dexed[instance_id].portamento_time, PORTAMENTO_TIME_MIN, PORTAMENTO_TIME_MAX);
configuration.dexed[instance_id].op_enabled = constrain(configuration.dexed[instance_id].op_enabled, OP_ENABLED_MIN, OP_ENABLED_MAX);
configuration.fx.chorus_frequency[instance_id] = constrain(configuration.fx.chorus_frequency[instance_id], CHORUS_FREQUENCY_MIN, CHORUS_FREQUENCY_MAX);
configuration.fx.chorus_waveform[instance_id] = constrain(configuration.fx.chorus_waveform[instance_id], CHORUS_WAVEFORM_MIN, CHORUS_WAVEFORM_MAX);
configuration.fx.chorus_depth[instance_id] = constrain(configuration.fx.chorus_depth[instance_id], CHORUS_DEPTH_MIN, CHORUS_DEPTH_MAX);
configuration.fx.chorus_level[instance_id] = constrain(configuration.fx.chorus_level[instance_id], CHORUS_LEVEL_MIN, CHORUS_LEVEL_MAX);
configuration.fx.delay_time[instance_id] = constrain(configuration.fx.delay_time[instance_id], DELAY_TIME_MIN, DELAY_TIME_MAX);
configuration.fx.delay_feedback[instance_id] = constrain(configuration.fx.delay_feedback[instance_id], DELAY_FEEDBACK_MIN, DELAY_FEEDBACK_MAX);
configuration.fx.delay_level[instance_id] = constrain(configuration.fx.delay_level[instance_id], DELAY_LEVEL_MIN, DELAY_LEVEL_MAX);
configuration.fx.reverb_send[instance_id] = constrain(configuration.fx.reverb_send[instance_id], REVERB_SEND_MIN, REVERB_SEND_MAX);
}
}
void init_configuration(void)
{
#ifdef DEBUG
Serial.println(F("INITIALIZING CONFIGURATION"));
#endif
configuration.sys.instances = INSTANCES_DEFAULT;
configuration.sys.vol = VOLUME_DEFAULT;
configuration.sys.mono = MONO_DEFAULT;
configuration.sys.soft_midi_thru = SOFT_MIDI_THRU_DEFAULT;
configuration.sys.performance_number = PERFORMANCE_NUM_DEFAULT;
configuration.fx.reverb_roomsize = REVERB_ROOMSIZE_DEFAULT;
configuration.fx.reverb_damping = REVERB_DAMPING_DEFAULT;
configuration.fx.reverb_level = REVERB_LEVEL_DEFAULT;
configuration.performance.fx_number = FX_NUM_DEFAULT;
for (uint8_t instance_id = 0; instance_id < MAX_DEXED; instance_id++)
{
configuration.performance.bank[instance_id] = SYSEXBANK_DEFAULT;
configuration.performance.voice[instance_id] = SYSEXSOUND_DEFAULT;
configuration.performance.voiceconfig_number[instance_id] = VOICECONFIG_NUM_DEFAULT;
configuration.dexed[instance_id].midi_channel = DEFAULT_MIDI_CHANNEL;
configuration.dexed[instance_id].lowest_note = INSTANCE_LOWEST_NOTE_MIN;
configuration.dexed[instance_id].highest_note = INSTANCE_HIGHEST_NOTE_MAX;
configuration.dexed[instance_id].filter_cutoff = FILTER_CUTOFF_DEFAULT;
configuration.dexed[instance_id].filter_resonance = FILTER_RESONANCE_DEFAULT;
configuration.dexed[instance_id].sound_intensity = SOUND_INTENSITY_DEFAULT;
configuration.dexed[instance_id].pan = PANORAMA_DEFAULT;
configuration.dexed[instance_id].transpose = TRANSPOSE_DEFAULT;
configuration.dexed[instance_id].tune = TUNE_DEFAULT;
configuration.dexed[instance_id].velocity_level = VELOCITY_LEVEL_DEFAULT;
configuration.dexed[instance_id].engine = ENGINE_DEFAULT;
configuration.dexed[instance_id].monopoly = MONOPOLY_DEFAULT;
configuration.dexed[instance_id].note_refresh = NOTE_REFRESH_DEFAULT;
configuration.dexed[instance_id].pb_range = PB_RANGE_DEFAULT;
configuration.dexed[instance_id].pb_step = PB_STEP_DEFAULT;
configuration.dexed[instance_id].mw_range = MW_RANGE_DEFAULT;
configuration.dexed[instance_id].mw_assign = MW_ASSIGN_DEFAULT;
configuration.dexed[instance_id].mw_mode = MW_MODE_DEFAULT;
configuration.dexed[instance_id].fc_range = FC_RANGE_DEFAULT;
configuration.dexed[instance_id].fc_assign = FC_ASSIGN_DEFAULT;
configuration.dexed[instance_id].fc_mode = FC_MODE_DEFAULT;
configuration.dexed[instance_id].bc_range = BC_RANGE_DEFAULT;
configuration.dexed[instance_id].bc_assign = BC_ASSIGN_DEFAULT;
configuration.dexed[instance_id].bc_mode = BC_MODE_DEFAULT;
configuration.dexed[instance_id].at_range = AT_RANGE_DEFAULT;
configuration.dexed[instance_id].at_assign = AT_ASSIGN_DEFAULT;
configuration.dexed[instance_id].at_mode = AT_MODE_DEFAULT;
configuration.dexed[instance_id].portamento_mode = PORTAMENTO_MODE_DEFAULT;
configuration.dexed[instance_id].portamento_glissando = PORTAMENTO_GLISSANDO_DEFAULT;
configuration.dexed[instance_id].portamento_time = PORTAMENTO_TIME_DEFAULT;
configuration.dexed[instance_id].op_enabled = OP_ENABLED_DEFAULT;
configuration.fx.chorus_frequency[instance_id] = CHORUS_FREQUENCY_DEFAULT;
configuration.fx.chorus_waveform[instance_id] = CHORUS_WAVEFORM_DEFAULT;
configuration.fx.chorus_depth[instance_id] = CHORUS_DEPTH_DEFAULT;
configuration.fx.chorus_level[instance_id] = CHORUS_LEVEL_DEFAULT;
configuration.fx.delay_time[instance_id] = DELAY_TIME_DEFAULT / 10;
configuration.fx.delay_feedback[instance_id] = DELAY_FEEDBACK_DEFAULT;
configuration.fx.delay_level[instance_id] = DELAY_LEVEL_DEFAULT;
configuration.fx.reverb_send[instance_id] = REVERB_SEND_DEFAULT;
configuration.performance.bank[instance_id] = SYSEXBANK_DEFAULT;
configuration.performance.voice[instance_id] = SYSEXSOUND_DEFAULT;
#if NUM_DEXED > 1
configuration.dexed[instance_id].polyphony = POLYPHONY_DEFAULT / 2;
#else
if (instance_id == 0)
{
configuration.dexed[instance_id].polyphony = POLYPHONY_DEFAULT;
}
else
{
configuration.dexed[instance_id].polyphony = 0;
}
#endif
#if NUM_DEXED > 1
MicroDexed[instance_id]->controllers.refresh();
#else
if (instance_id == 0)
MicroDexed[instance_id]->controllers.refresh();
#endif
}
set_volume(configuration.sys.vol, configuration.sys.mono);
eeprom_update();
}
void eeprom_update(void)
{
uint8_t* c = (uint8_t*)&configuration;
for (uint16_t i = 0; i < sizeof(configuration); i++)
EEPROM.update(EEPROM_START_ADDRESS + i, c[i]);
}
void eeprom_update_sys(void)
{
uint8_t* c = (uint8_t*)&configuration.sys;
for (uint16_t i = 0; i < sizeof(configuration.sys); i++)
EEPROM.update(EEPROM_START_ADDRESS + offsetof(configuration_s, sys) + i, c[i]);
#ifdef DEBUG
Serial.println(F("Updating EEPROM sys."));
#endif
}
bool eeprom_get_sys(void)
{
EEPROM.get(EEPROM_START_ADDRESS + offsetof(configuration_s, sys), configuration.sys);
return (true);
}
void eeprom_update_fx(void)
{
uint8_t* c = (uint8_t*)&configuration.fx;
for (uint16_t i = 0; i < sizeof(configuration.fx); i++)
EEPROM.update(EEPROM_START_ADDRESS + offsetof(configuration_s, fx) + i, c[i]);
#ifdef DEBUG
Serial.println(F("Updating EEPROM fx."));
#endif
}
bool eeprom_get_fx(void)
{
EEPROM.get(EEPROM_START_ADDRESS + offsetof(configuration_s, fx), configuration.fx);
return (true);
}
void eeprom_update_dexed(uint8_t instance_id)
{
#if NUM_DEXED == 1
uint8_t* c = (uint8_t*)&configuration.dexed[0];
for (uint16_t i = 0; i < sizeof(configuration.dexed[0]); i++)
EEPROM.update(EEPROM_START_ADDRESS + offsetof(configuration_s, dexed[0]) + i, c[i]);
#else
uint8_t* c;
if (instance_id == 0)
c = (uint8_t*)&configuration.dexed[0];
else
c = (uint8_t*)&configuration.dexed[1];
for (uint16_t i = 0; i < sizeof(configuration.dexed[instance_id]); i++)
{
if (instance_id == 0)
EEPROM.update(EEPROM_START_ADDRESS + offsetof(configuration_s, dexed[0]) + i, c[i]);
else
EEPROM.update(EEPROM_START_ADDRESS + offsetof(configuration_s, dexed[1]) + i, c[i]);
}
#endif
#ifdef DEBUG
Serial.print(F("Updating EEPROM dexed (instance "));
Serial.print(instance_id);
Serial.println(F(")."));
#endif
}
bool eeprom_get_dexed(uint8_t instance_id)
{
for (uint8_t instance_id = 0; instance_id < MAX_DEXED; instance_id++)
{
if (instance_id == 0)
EEPROM.get(EEPROM_START_ADDRESS + offsetof(configuration_s, dexed[0]), configuration.dexed[0]);
else
EEPROM.get(EEPROM_START_ADDRESS + offsetof(configuration_s, dexed[1]), configuration.dexed[1]);
}
return (true);
}
void eeprom_update_performance()
{
EEPROM.put(EEPROM_START_ADDRESS + offsetof(configuration_s, performance), configuration.performance);
#ifdef DEBUG
Serial.println(F("Updating EEPROM performance."));
#endif
}
bool eeprom_get_performance()
{
EEPROM.get(EEPROM_START_ADDRESS + offsetof(configuration_s, performance), configuration.performance);
return (true);
}
/******************************************************************************
PARAMETER-HELPERS
******************************************************************************/
void set_fx_params(void)
{
#if defined(USE_FX)
for (uint8_t instance_id = 0; instance_id < NUM_DEXED; instance_id++)
{
// CHORUS
//chorus_mixer[instance_id]->gain(0, 1.0 - pseudo_log_curve(mapfloat(configuration.fx.chorus_level[instance_id], CHORUS_LEVEL_MIN, CHORUS_LEVEL_MAX, 0.0, 1.0)));
//chorus_mixer[instance_id]->gain(1, pseudo_log_curve(mapfloat(configuration.fx.chorus_level[instance_id], CHORUS_LEVEL_MIN, CHORUS_LEVEL_MAX, 0.0, 1.0)));
//chorus_mixer[instance_id]->gain(0, 1.0 - mapfloat(configuration.fx.chorus_level[instance_id], CHORUS_LEVEL_MIN, CHORUS_LEVEL_MAX, 0.0, 0.5));
chorus_mixer[instance_id]->gain(1, mapfloat(configuration.fx.chorus_level[instance_id], CHORUS_LEVEL_MIN, CHORUS_LEVEL_MAX, 0.0, 0.5));
switch (configuration.fx.chorus_waveform[instance_id])
{
case 0:
chorus_modulator[instance_id]->begin(WAVEFORM_TRIANGLE);
break;
case 1:
chorus_modulator[instance_id]->begin(WAVEFORM_SINE);
break;
default:
chorus_modulator[instance_id]->begin(WAVEFORM_TRIANGLE);
}
chorus_modulator[instance_id]->phase(0);
chorus_modulator[instance_id]->frequency(configuration.fx.chorus_frequency[instance_id] / 10.0);
chorus_modulator[instance_id]->amplitude(mapfloat(configuration.fx.chorus_depth[instance_id], CHORUS_DEPTH_MIN, CHORUS_DEPTH_MAX, 0.0, 1.0));
chorus_modulator[instance_id]->offset(0.0);
#if MOD_FILTER_OUTPUT == MOD_BUTTERWORTH_FILTER_OUTPUT
// Butterworth filter, 12 db/octave
modchorus_filter[instance_id]->setLowpass(0, MOD_FILTER_CUTOFF_HZ, 0.707);
#elif MOD_FILTER_OUTPUT == MOD_LINKWITZ_RILEY_FILTER_OUTPUT
// Linkwitz-Riley filter, 48 dB/octave
modchorus_filter[instance_id]->setLowpass(0, MOD_FILTER_CUTOFF_HZ, 0.54);
modchorus_filter[instance_id]->setLowpass(1, MOD_FILTER_CUTOFF_HZ, 1.3);
modchorus_filter[instance_id]->setLowpass(2, MOD_FILTER_CUTOFF_HZ, 0.54);
modchorus_filter[instance_id]->setLowpass(3, MOD_FILTER_CUTOFF_HZ, 1.3);
#endif
// DELAY
delay_mixer[instance_id]->gain(0, 1.0);
delay_mixer[instance_id]->gain(1, pseudo_log_curve(mapfloat(configuration.fx.delay_level[instance_id], DELAY_LEVEL_MIN, DELAY_LEVEL_MAX, 0.0, 1.0)));
delay_fx[instance_id]->delay(0, constrain(configuration.fx.delay_time[instance_id] * 10, DELAY_TIME_MIN * 10, DELAY_TIME_MAX * 10));
delay_fb_mixer[instance_id]->gain(0, 1.0);
delay_fb_mixer[instance_id]->gain(1, pseudo_log_curve(mapfloat(configuration.fx.delay_feedback[instance_id], DELAY_FEEDBACK_MIN, DELAY_FEEDBACK_MAX, 0.0, 1.0)));
// REVERB
reverb_mixer_r.gain(instance_id, pseudo_log_curve(configuration.fx.reverb_send[instance_id] / 100.0));
reverb_mixer_l.gain(instance_id, pseudo_log_curve(configuration.fx.reverb_send[instance_id] / 100.0));
}
// REVERB
freeverb_r.roomsize(mapfloat(configuration.fx.reverb_roomsize, REVERB_ROOMSIZE_MIN, REVERB_ROOMSIZE_MAX, 0.0, 1.0));
freeverb_r.damping(mapfloat(configuration.fx.reverb_damping, REVERB_DAMPING_MIN, REVERB_DAMPING_MAX, 0.0, 1.0));
freeverb_l.roomsize(mapfloat(configuration.fx.reverb_roomsize, REVERB_ROOMSIZE_MIN, REVERB_ROOMSIZE_MAX, 0.0, 1.0));
freeverb_l.damping(mapfloat(configuration.fx.reverb_damping, REVERB_DAMPING_MIN, REVERB_DAMPING_MAX, 0.0, 1.0));
master_mixer_r.gain(3, pseudo_log_curve(configuration.fx.reverb_level / 100.0));
master_mixer_l.gain(3, pseudo_log_curve(configuration.fx.reverb_level / 100.0));
#endif
}
void set_voiceconfig_params(uint8_t instance_id)
{
// DEXED FILTER
//MicroDexed[instance_id]->fx.Gain = mapfloat(configuration.dexed[instance_id].sound_intensity, SOUND_INTENSITY_MIN, SOUND_INTENSITY_MAX, 0.0, SOUND_INTENSITY_AMP_MAX);
MicroDexed[instance_id]->fx.Gain = 1.0;
MicroDexed[instance_id]->fx.Reso = mapfloat(configuration.dexed[instance_id].filter_resonance, FILTER_RESONANCE_MIN, FILTER_RESONANCE_MAX, 1.0, 0.0);
MicroDexed[instance_id]->fx.Cutoff = mapfloat(configuration.dexed[instance_id].filter_cutoff, FILTER_CUTOFF_MIN, FILTER_CUTOFF_MAX, 1.0, 0.0);
MicroDexed[instance_id]->doRefreshVoice();
// Dexed output level
dexed_level[instance_id]->gain(pseudo_log_curve(mapfloat(configuration.dexed[instance_id].sound_intensity, SOUND_INTENSITY_MIN, SOUND_INTENSITY_MAX, 0.0, SOUND_INTENSITY_AMP_MAX)));
// PANORAMA
mono2stereo[instance_id]->panorama(mapfloat(configuration.dexed[instance_id].pan, PANORAMA_MIN, PANORAMA_MAX, -1.0, 1.0));
}
void set_sys_params(void)
{
// set initial volume
set_volume(configuration.sys.vol, configuration.sys.mono);
}
/******************************************************************************
HELPERS
******************************************************************************/
// https://www.reddit.com/r/Teensy/comments/7r19uk/reset_and_reboot_teensy_lc_via_code/
#define SCB_AIRCR (*(volatile uint32_t *)0xE000ED0C) // Application Interrupt and Reset Control location
void _softRestart(void)
{
Serial.end(); //clears the serial monitor if used
SCB_AIRCR = 0x05FA0004; //write value for restart
}
float pseudo_log_curve(float value)
{
const float _pseudo_log = 1048575 / (float)(1 << 20);
#ifdef DEBUG
Serial.print(F("value in: "));
Serial.print(value, 3);
Serial.print(F(" value out: "));
Serial.println(mapfloat(_pseudo_log * arm_sin_f32(value), 0.0, _pseudo_log * arm_sin_f32(1.0), 0.0, 1.0), 3);
#endif
return (mapfloat(_pseudo_log * arm_sin_f32(value), 0.0, _pseudo_log * arm_sin_f32(1.0), 0.0, 1.0));
}
uint32_t crc32(byte * calc_start, uint16_t calc_bytes) // base code from https://www.arduino.cc/en/Tutorial/EEPROMCrc
{
const uint32_t crc_table[16] =
{
0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac,
0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c,
0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c,
0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c
};
uint32_t crc = ~0L;
for (byte* index = calc_start ; index < (calc_start + calc_bytes) ; ++index)
{
crc = crc_table[(crc ^ *index) & 0x0f] ^ (crc >> 4);
crc = crc_table[(crc ^ (*index >> 4)) & 0x0f] ^ (crc >> 4);
crc = ~crc;
}
return (crc);
}
void generate_version_string(char* buffer, uint8_t len)
{
char tmp[3];
memset(buffer, 0, len);
strncat(buffer, VERSION, len);
#if defined(TEENSY3_5)
strncat(buffer, "-3.5", 4);
#elif defined(TEENSY3_6)
strncat(buffer, "-3.6", 4);
#elif defined(TEENSY4)
strncat(buffer, "-4.0", 4);
#endif
#if defined(USE_FX)
strncat(buffer, "FX", 2);
#endif
#if defined(MAX_NOTES)
strncat(buffer, "-", 1);
itoa (MAX_NOTES, tmp, 10);
strncat(buffer, tmp, 2);
#endif
}
#ifdef DISPLAY_LCD_SPI
void change_disp_sd(bool disp)
{
if (sd_card > 0)
{
digitalWrite(sd_card, disp);
digitalWrite(U8X8_CS_PIN, !disp);
}
}
#endif
uint8_t check_sd_cards(void)
{
uint8_t ret = 0;
memset(sd_string, 0, sizeof(sd_string));
for (uint8_t i = 0; i < sizeof(cs_pins); i++)
{
#ifdef DEBUG
Serial.print(F("Checking CS pin "));
Serial.print(cs_pins[i], DEC);
Serial.println(F(" for SD card"));
#endif
SPI.setMOSI(mosi_pins[i]);
SPI.setSCK(sck_pins[i]);
if (SD.begin(cs_pins[i]) == true)
{
#ifdef DEBUG
Serial.print(F("Found. Using pin "));
Serial.println(cs_pins[i], DEC);
#endif
ret = cs_pins[i];
break;
}
}
if (ret >= 0)
{
if (!card.init(SPI_HALF_SPEED, ret))
{
#ifdef DEBUG
Serial.println(F("SD card initialization failed."));
#endif
ret = -1;
}
}
if (ret >= 0)
{
#ifdef DEBUG
Serial.print(F("Card type: "));
#endif
switch (card.type()) {
case SD_CARD_TYPE_SD1:
sprintf(sd_string, "%-5s", "SD1");
#ifdef DEBUG
Serial.println(F("SD1"));
#endif
break;
case SD_CARD_TYPE_SD2:
sprintf(sd_string, "%-5s", "SD2");
#ifdef DEBUG
Serial.println(F("SD2"));
#endif
break;
case SD_CARD_TYPE_SDHC:
sprintf(sd_string, "%-5s", "SD2");
#ifdef DEBUG
Serial.println(F("SDHC"));
#endif
break;
default:
sprintf(sd_string, "%-5s", "UKNW");
#ifdef DEBUG
Serial.println(F("Unknown"));
#endif
}
if (!volume.init(card))
{
#ifdef DEBUG
Serial.println(F("Could not find FAT16/FAT32 partition."));
#endif
ret = -1;
}
}
if (ret >= 0)
{
uint32_t volumesize;
volumesize = volume.blocksPerCluster() * volume.clusterCount() / 2097152;
#ifdef DEBUG
Serial.print(F("Volume type is FAT"));
Serial.println(volume.fatType(), DEC);
Serial.print(F("Volume size (GB): "));
Serial.println(volumesize);
#endif
sprintf(sd_string + 5, "FAT%2d %02dGB", volume.fatType(), int(volumesize));
}
#ifdef DEBUG
Serial.println(sd_string);
#endif
return (ret);
}
void check_and_create_directories(void)
{
if (sd_card > 0)
{
uint8_t i;
char tmp[FILENAME_LEN];
#ifdef DEBUG
Serial.println(F("Directory check... "));
#endif
// create directories for banks
for (i = 0; i < MAX_BANKS; i++)
{
sprintf(tmp, "/%d", i);
if (!SD.exists(tmp))
{
#ifdef DEBUG
Serial.print(F("Creating directory "));
Serial.println(tmp);
#endif
SD.mkdir(tmp);
}
}
// create directories for confgiuration files
sprintf(tmp, "/%s", VOICE_CONFIG_PATH);
if (!SD.exists(tmp))
{
#ifdef DEBUG
Serial.print(F("Creating directory "));
Serial.println(tmp);
#endif
SD.mkdir(tmp);
}
sprintf(tmp, "/%s", PERFORMANCE_CONFIG_PATH);
if (!SD.exists(tmp))
{
#ifdef DEBUG
Serial.print(F("Creating directory "));
Serial.println(tmp);
#endif
SD.mkdir(tmp);
}
sprintf(tmp, "/%s", FX_CONFIG_PATH);
if (!SD.exists(tmp))
{
#ifdef DEBUG
Serial.print(F("Creating directory "));
Serial.println(tmp);
#endif
SD.mkdir(tmp);
}
}
#ifdef DEBUG
else
Serial.println(F("No SD card for directory check available."));
#endif
}
/******************************************************************************
DEBUG HELPER
******************************************************************************/
#if defined (DEBUG) && defined (SHOW_CPU_LOAD_MSEC)
void show_cpu_and_mem_usage(void)
{
uint32_t sum_xrun = 0;
uint16_t sum_render_time_max = 0;
uint32_t sum_overload = 0;
for (uint8_t instance_id = 0; instance_id < NUM_DEXED; instance_id++)
{
sum_xrun += MicroDexed[instance_id]->xrun;
sum_render_time_max += MicroDexed[instance_id]->render_time_max;
sum_overload += MicroDexed[instance_id]->overload;
MicroDexed[instance_id]->render_time_max = 0;
}
if (AudioProcessorUsageMax() > 99.9)
{
cpumax++;
#ifdef DEBUG
Serial.print(F("*"));
#endif
}
#ifdef DEBUG
else
Serial.print(F(" "));
Serial.print(F("CPU:"));
Serial.print(AudioProcessorUsage(), 2);
Serial.print(F("%|CPUMAX:"));
Serial.print(AudioProcessorUsageMax(), 2);
Serial.print(F("%|CPUMAXCNT:"));
Serial.print(cpumax, DEC);
Serial.print(F("|MEM:"));
Serial.print(AudioMemoryUsage(), DEC);
Serial.print(F("|MEMMAX:"));
Serial.print(AudioMemoryUsageMax(), DEC);
Serial.print(F("|RENDERTIMEMAX:"));
Serial.print(sum_render_time_max, DEC);
Serial.print(F("|XRUN:"));
Serial.print(sum_xrun, DEC);
Serial.print(F("|OVERLOAD:"));
Serial.println(sum_overload, DEC);
Serial.print(F("PEAKR:"));
Serial.print(peak_r, DEC);
Serial.print(F("|PEAKL:"));
Serial.print(peak_l, DEC);
Serial.print(F("|PEAKMD:"));
Serial.print(peak_dexed, DEC);
Serial.print(F("|ACTPEAKMD:"));
Serial.print(peak_dexed_value, 1);
Serial.print(F("|BLOCKSIZE:"));
Serial.print(AUDIO_BLOCK_SAMPLES, DEC);
Serial.print(F("|ACTVOICES:"));
for (uint8_t instance_id = 0; instance_id < NUM_DEXED; instance_id++)
{
Serial.print(instance_id, DEC);
Serial.print(F("="));
Serial.print(active_voices[instance_id], DEC);
if (instance_id != NUM_DEXED - 1)
Serial.print(F(","));
}
Serial.println();
#endif
AudioProcessorUsageMaxReset();
AudioMemoryUsageMaxReset();
}
#endif
#ifdef DEBUG
void show_configuration(void)
{
Serial.println();
Serial.println(F("CONFIGURATION:"));
Serial.println(F("System"));
Serial.print(F(" Instances ")); Serial.println(configuration.sys.instances, DEC);
Serial.print(F(" Volume ")); Serial.println(configuration.sys.vol, DEC);
Serial.print(F(" Mono ")); Serial.println(configuration.sys.mono, DEC);
Serial.print(F(" Soft MIDI Thru ")); Serial.println(configuration.sys.soft_midi_thru, DEC);
Serial.println(F("FX"));
Serial.print(F(" Reverb Roomsize ")); Serial.println(configuration.fx.reverb_roomsize, DEC);
Serial.print(F(" Reverb Damping ")); Serial.println(configuration.fx.reverb_damping, DEC);
Serial.print(F(" Reverb Level ")); Serial.println(configuration.fx.reverb_level, DEC);
for (uint8_t instance_id = 0; instance_id < NUM_DEXED; instance_id++)
{
Serial.print(F("Dexed instance "));
Serial.println(instance_id, DEC);
Serial.print(F(" MIDI-Channel ")); Serial.println(configuration.dexed[instance_id].midi_channel, DEC);
Serial.print(F(" Lowest Note ")); Serial.println(configuration.dexed[instance_id].lowest_note, DEC);
Serial.print(F(" Highest Note ")); Serial.println(configuration.dexed[instance_id].highest_note, DEC);
Serial.print(F(" Chorus Frequency ")); Serial.println(configuration.fx.chorus_frequency[instance_id], DEC);
Serial.print(F(" Chorus Waveform ")); Serial.println(configuration.fx.chorus_waveform[instance_id], DEC);
Serial.print(F(" Chorus Depth ")); Serial.println(configuration.fx.chorus_depth[instance_id], DEC);
Serial.print(F(" Chorus Level ")); Serial.println(configuration.fx.chorus_level[instance_id], DEC);
Serial.print(F(" Delay Time ")); Serial.println(configuration.fx.delay_time[instance_id], DEC);
Serial.print(F(" Delay Feedback ")); Serial.println(configuration.fx.delay_feedback[instance_id], DEC);
Serial.print(F(" Delay Level ")); Serial.println(configuration.fx.delay_level[instance_id], DEC);
Serial.print(F(" Filter Cutoff ")); Serial.println(configuration.dexed[instance_id].filter_cutoff, DEC);
Serial.print(F(" Filter Resonance ")); Serial.println(configuration.dexed[instance_id].filter_resonance, DEC);
Serial.print(F(" Sound Intensity ")); Serial.println(configuration.dexed[instance_id].sound_intensity, DEC);
Serial.print(F(" Panorama ")); Serial.println(configuration.dexed[instance_id].pan, DEC);
Serial.print(F(" Transpose ")); Serial.println(configuration.dexed[instance_id].transpose, DEC);
Serial.print(F(" Tune ")); Serial.println(configuration.dexed[instance_id].tune, DEC);
Serial.print(F(" Polyphony ")); Serial.println(configuration.dexed[instance_id].polyphony, DEC);
Serial.print(F(" Engine ")); Serial.println(configuration.dexed[instance_id].engine, DEC);
Serial.print(F(" Mono/Poly ")); Serial.println(configuration.dexed[instance_id].monopoly, DEC);
Serial.print(F(" Note Refresh ")); Serial.println(configuration.dexed[instance_id].note_refresh, DEC);
Serial.print(F(" Pitchbend Range ")); Serial.println(configuration.dexed[instance_id].pb_range, DEC);
Serial.print(F(" Pitchbend Step ")); Serial.println(configuration.dexed[instance_id].pb_step, DEC);
Serial.print(F(" Modwheel Range ")); Serial.println(configuration.dexed[instance_id].mw_range, DEC);
Serial.print(F(" Modwheel Assign ")); Serial.println(configuration.dexed[instance_id].mw_assign, DEC);
Serial.print(F(" Modwheel Mode ")); Serial.println(configuration.dexed[instance_id].mw_mode, DEC);
Serial.print(F(" Footctrl Range ")); Serial.println(configuration.dexed[instance_id].fc_range, DEC);
Serial.print(F(" Footctrl Assign ")); Serial.println(configuration.dexed[instance_id].fc_assign, DEC);
Serial.print(F(" Footctrl Mode ")); Serial.println(configuration.dexed[instance_id].fc_mode, DEC);
Serial.print(F(" BreathCtrl Range ")); Serial.println(configuration.dexed[instance_id].bc_range, DEC);
Serial.print(F(" Breathctrl Assign ")); Serial.println(configuration.dexed[instance_id].bc_assign, DEC);
Serial.print(F(" Breathctrl Mode ")); Serial.println(configuration.dexed[instance_id].bc_mode, DEC);
Serial.print(F(" Aftertouch Range ")); Serial.println(configuration.dexed[instance_id].at_range, DEC);
Serial.print(F(" Aftertouch Assign ")); Serial.println(configuration.dexed[instance_id].at_assign, DEC);
Serial.print(F(" Aftertouch Mode ")); Serial.println(configuration.dexed[instance_id].at_mode, DEC);
Serial.print(F(" Portamento Mode ")); Serial.println(configuration.dexed[instance_id].portamento_mode, DEC);
Serial.print(F(" Portamento Glissando ")); Serial.println(configuration.dexed[instance_id].portamento_glissando, DEC);
Serial.print(F(" Portamento Time ")); Serial.println(configuration.dexed[instance_id].portamento_time, DEC);
Serial.print(F(" OP Enabled ")); Serial.println(configuration.dexed[instance_id].op_enabled, DEC);
Serial.flush();
}
Serial.println(F("Performance"));
for (uint8_t instance_id = 0; instance_id < NUM_DEXED; instance_id++)
{
Serial.print(F(" Bank ")); Serial.print(instance_id, DEC); Serial.print(" "); Serial.println(configuration.performance.bank[instance_id], DEC);
Serial.print(F(" Voice ")); Serial.print(instance_id, DEC); Serial.print(" "); Serial.println(configuration.performance.voice[instance_id], DEC);
}
Serial.print(F(" FX-Number ")); Serial.println(configuration.performance.fx_number, DEC);
Serial.println();
Serial.flush();
}
void show_patch(uint8_t instance_id)
{
char vn[VOICE_NAME_LEN];
Serial.print(F("INSTANCE "));
Serial.println(instance_id, DEC);
memset(vn, 0, sizeof(vn));
Serial.println(F("+==========================================================================================================+"));
for (int8_t i = 5; i >= 0; --i)
{
Serial.println(F("+==========================================================================================================+"));
Serial.print(F("| OP"));
Serial.print(6 - i, DEC);
Serial.println(F(" |"));
Serial.println(F("+======+======+======+======+======+======+======+======+================+================+================+"));
Serial.println(F("| R1 | R2 | R3 | R4 | L1 | L2 | L3 | L4 | LEV_SCL_BRK_PT | SCL_LEFT_DEPTH | SCL_RGHT_DEPTH |"));
Serial.println(F("+------+------+------+------+------+------+------+------+----------------+----------------+----------------+"));
Serial.print("| ");
SerialPrintFormatInt3(MicroDexed[instance_id]->data[(i * 21) + DEXED_OP_EG_R1]);
Serial.print(F(" | "));
SerialPrintFormatInt3(MicroDexed[instance_id]->data[(i * 21) + DEXED_OP_EG_R2]);
Serial.print(F(" | "));
SerialPrintFormatInt3(MicroDexed[instance_id]->data[(i * 21) + DEXED_OP_EG_R3]);
Serial.print(F(" | "));
SerialPrintFormatInt3(MicroDexed[instance_id]->data[(i * 21) + DEXED_OP_EG_R4]);
Serial.print(F(" | "));
SerialPrintFormatInt3(MicroDexed[instance_id]->data[(i * 21) + DEXED_OP_EG_L1]);
Serial.print(F(" | "));
SerialPrintFormatInt3(MicroDexed[instance_id]->data[(i * 21) + DEXED_OP_EG_L2]);
Serial.print(F(" | "));
SerialPrintFormatInt3(MicroDexed[instance_id]->data[(i * 21) + DEXED_OP_EG_L3]);
Serial.print(F(" | "));
SerialPrintFormatInt3(MicroDexed[instance_id]->data[(i * 21) + DEXED_OP_EG_L4]);
Serial.print(F(" | "));
SerialPrintFormatInt3(MicroDexed[instance_id]->data[(i * 21) + DEXED_OP_LEV_SCL_BRK_PT]);
Serial.print(F(" | "));
SerialPrintFormatInt3(MicroDexed[instance_id]->data[(i * 21) + DEXED_OP_SCL_LEFT_DEPTH]);
Serial.print(F(" | "));
SerialPrintFormatInt3(MicroDexed[instance_id]->data[(i * 21) + DEXED_OP_SCL_RGHT_DEPTH]);
Serial.println(F(" |"));
Serial.println(F("+======+======+======+======+======+===+==+==+===+======+====+========+==+====+=======+===+================+"));
Serial.println(F("| SCL_L_CURVE | SCL_R_CURVE | RT_SCALE | AMS | KVS | OUT_LEV | OP_MOD | FRQ_C | FRQ_F | DETUNE |"));
Serial.println(F("+-------------+-------------+----------+-----+-----+---------+--------+-------+-------+--------------------+"));
Serial.print(F("| "));
SerialPrintFormatInt3(MicroDexed[instance_id]->data[(i * 21) + DEXED_OP_SCL_LEFT_CURVE]);
Serial.print(F(" | "));
SerialPrintFormatInt3(MicroDexed[instance_id]->data[(i * 21) + DEXED_OP_SCL_RGHT_CURVE]);
Serial.print(F(" | "));
SerialPrintFormatInt3(MicroDexed[instance_id]->data[(i * 21) + DEXED_OP_OSC_RATE_SCALE]);
Serial.print(F(" |"));
SerialPrintFormatInt3(MicroDexed[instance_id]->data[(i * 21) + DEXED_OP_AMP_MOD_SENS]);
Serial.print(F(" |"));
SerialPrintFormatInt3(MicroDexed[instance_id]->data[(i * 21) + DEXED_OP_KEY_VEL_SENS]);
Serial.print(F(" | "));
SerialPrintFormatInt3(MicroDexed[instance_id]->data[(i * 21) + DEXED_OP_OUTPUT_LEV]);
Serial.print(F(" | "));
SerialPrintFormatInt3(MicroDexed[instance_id]->data[(i * 21) + DEXED_OP_OSC_MODE]);
Serial.print(F(" | "));
SerialPrintFormatInt3(MicroDexed[instance_id]->data[(i * 21) + DEXED_OP_FREQ_COARSE]);
Serial.print(F(" | "));
SerialPrintFormatInt3(MicroDexed[instance_id]->data[(i * 21) + DEXED_OP_FREQ_FINE]);
Serial.print(F(" | "));
SerialPrintFormatInt3(MicroDexed[instance_id]->data[(i * 21) + DEXED_OP_OSC_DETUNE]);
Serial.println(F(" |"));
}
Serial.println(F("+=======+=====+=+=======+===+===+======++====+==+==+====+====+==+======+======+=====+=+====================+"));
Serial.println(F("| PR1 | PR2 | PR3 | PR4 | PL1 | PL2 | PL3 | PL4 | ALG | FB | OKS | TRANSPOSE |"));
Serial.println(F("+-------+-------+-------+-------+-------+-------+-------+-------+------+------+-----+----------------------+"));
Serial.print(F("| "));
for (int8_t i = 0; i < 8; i++)
{
SerialPrintFormatInt3(MicroDexed[instance_id]->data[DEXED_VOICE_OFFSET + i]);
Serial.print(F(" | "));
}
SerialPrintFormatInt3(MicroDexed[instance_id]->data[DEXED_VOICE_OFFSET + DEXED_ALGORITHM]);
Serial.print(F(" | "));
SerialPrintFormatInt3(MicroDexed[instance_id]->data[DEXED_VOICE_OFFSET + DEXED_FEEDBACK]);
Serial.print(F(" |"));
SerialPrintFormatInt3(MicroDexed[instance_id]->data[DEXED_VOICE_OFFSET + DEXED_OSC_KEY_SYNC]);
Serial.print(F(" | "));
SerialPrintFormatInt3(MicroDexed[instance_id]->data[DEXED_VOICE_OFFSET + DEXED_TRANSPOSE]);
Serial.println(F(" |"));
Serial.println(F("+=======+=+=====+===+===+=====+=+=======+=======+==+====+=====+=+======++=====+=====+======================+"));
Serial.println(F("| LFO SPD | LFO DLY | LFO PMD | LFO AMD | LFO SYNC | LFO WAVE | LFO PMS | NAME |"));
Serial.println(F("+---------+---------+---------+---------+----------+----------+---------+----------------------------------+"));
Serial.print(F("| "));
SerialPrintFormatInt3(MicroDexed[instance_id]->data[DEXED_VOICE_OFFSET + DEXED_LFO_SPEED]);
Serial.print(F(" | "));
SerialPrintFormatInt3(MicroDexed[instance_id]->data[DEXED_VOICE_OFFSET + DEXED_LFO_DELAY]);
Serial.print(F(" | "));
SerialPrintFormatInt3(MicroDexed[instance_id]->data[DEXED_VOICE_OFFSET + DEXED_LFO_PITCH_MOD_DEP]);
Serial.print(F(" | "));
SerialPrintFormatInt3(MicroDexed[instance_id]->data[DEXED_VOICE_OFFSET + DEXED_LFO_AMP_MOD_DEP]);
Serial.print(F(" | "));
SerialPrintFormatInt3(MicroDexed[instance_id]->data[DEXED_VOICE_OFFSET + DEXED_LFO_SYNC]);
Serial.print(F(" | "));
SerialPrintFormatInt3(MicroDexed[instance_id]->data[DEXED_VOICE_OFFSET + DEXED_LFO_WAVE]);
Serial.print(F(" | "));
SerialPrintFormatInt3(MicroDexed[instance_id]->data[DEXED_VOICE_OFFSET + DEXED_LFO_PITCH_MOD_SENS]);
Serial.print(F(" | "));
strncpy(vn, (char *)&MicroDexed[instance_id]->data[DEXED_VOICE_OFFSET + DEXED_NAME], VOICE_NAME_LEN - 1);
Serial.print(vn);
Serial.println(F(" |"));
Serial.println(F("+=========+=========+=========+=========+==========+==========+=========+==================================+"));
Serial.println(F("+==========================================================================================================+"));
}
void SerialPrintFormatInt3(uint8_t num)
{
char buf[4];
sprintf(buf, "%3d", num);
Serial.print(buf);
}
#endif