You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
MicroDexed/MicroDexed.ino

1000 lines
31 KiB

/*
MicroDexed
MicroDexed is a port of the Dexed sound engine
(https://github.com/asb2m10/dexed) for the Teensy-3.5/3.6 with audio shield.
Dexed ist heavily based on https://github.com/google/music-synthesizer-for-android
(c)2018,2019 H. Wirtz <wirtz@parasitstudio.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "config.h"
#include <Audio.h>
#include <Wire.h>
#include <SPI.h>
#include <SD.h>
#include <MIDI.h>
#include <EEPROM.h>
#include "EEPROMAnything.h"
#include "midi_devices.hpp"
#include <limits.h>
#include "dexed.h"
#include "dexed_sysex.h"
#include "PluginFx.h"
#ifdef I2C_DISPLAY // selecting sounds by encoder, button and display
#include "UI.h"
#define BOUNCE_WITH_PROMPT_DETECTION
#include <Bounce.h>
#define ENCODER_DO_NOT_USE_INTERRUPTS
#include "Encoder4.h"
#include "LiquidCrystalPlus_I2C.h"
LiquidCrystalPlus_I2C lcd(LCD_I2C_ADDRESS, LCD_CHARS, LCD_LINES);
Encoder4 enc[2] = {Encoder4(ENC_L_PIN_A, ENC_L_PIN_B), Encoder4(ENC_R_PIN_A, ENC_R_PIN_B)};
int32_t enc_val[2] = {INITIAL_ENC_L_VALUE, INITIAL_ENC_R_VALUE};
Bounce but[2] = {Bounce(BUT_L_PIN, BUT_DEBOUNCE_MS), Bounce(BUT_R_PIN, BUT_DEBOUNCE_MS)};
elapsedMillis master_timer;
uint8_t ui_state = UI_MAIN;
uint8_t ui_main_state = UI_MAIN_VOICE;
#endif
AudioPlayQueue queue1;
AudioAnalyzePeak peak1;
AudioEffectDelay delay1;
AudioMixer4 mixer1;
AudioMixer4 mixer2;
AudioAmplifier volume_r;
AudioAmplifier volume_l;
AudioOutputUSB usb1;
AudioConnection patchCord0(queue1, peak1);
AudioConnection patchCord1(queue1, 0, mixer1, 0);
AudioConnection patchCord2(queue1, 0, mixer2, 0);
AudioConnection patchCord3(delay1, 0, mixer1, 1);
AudioConnection patchCord4(delay1, 0, mixer2, 2);
AudioConnection patchCord5(mixer1, delay1);
AudioConnection patchCord6(mixer1, 0, mixer2, 1);
AudioConnection patchCord7(mixer2, volume_r);
AudioConnection patchCord8(mixer2, volume_l);
AudioConnection patchCord9(mixer2, 0, usb1, 0);
AudioConnection patchCord10(mixer2, 0, usb1, 1);
#if defined(TEENSY_AUDIO_BOARD)
AudioOutputI2S i2s1;
AudioConnection patchCord11(volume_r, 0, i2s1, 0);
AudioConnection patchCord12(volume_l, 0, i2s1, 1);
AudioControlSGTL5000 sgtl5000_1;
#elif defined(TGA_AUDIO_BOARD)
AudioOutputI2S i2s1;
AudioConnection patchCord11(volume_r, 0, i2s1, 0);
AudioConnection patchCord12(volume_l, 0, i2s1, 1);
AudioControlWM8731master wm8731_1;
#else
AudioOutputPT8211 pt8211_1;
AudioConnection patchCord11(volume_r, 0, pt8211_1, 0);
AudioConnection patchCord12(volume_l, 0, pt8211_1, 1);
#endif
Dexed* dexed = new Dexed(SAMPLE_RATE);
bool sd_card_available = false;
uint32_t xrun = 0;
uint32_t overload = 0;
uint32_t peak = 0;
uint16_t render_time_max = 0;
uint8_t max_loaded_banks = 0;
char bank_name[BANK_NAME_LEN];
char voice_name[VOICE_NAME_LEN];
char bank_names[MAX_BANKS][BANK_NAME_LEN];
char voice_names[MAX_VOICES][VOICE_NAME_LEN];
elapsedMillis autostore;
uint8_t midi_timing_counter = 0; // 24 per qarter
elapsedMillis midi_timing_timestep;
uint16_t midi_timing_quarter = 0;
elapsedMillis long_button_pressed;
uint8_t effect_filter_cutoff = 0;
uint8_t effect_filter_resonance = 0;
uint8_t effect_delay_time = 0;
uint8_t effect_delay_feedback = 0;
uint8_t effect_delay_volume = 0;
bool effect_delay_sync = 0;
elapsedMicros fill_audio_buffer;
elapsedMillis control_rate;
uint8_t active_voices = 0;
#ifdef SHOW_CPU_LOAD_MSEC
elapsedMillis cpu_mem_millis;
#endif
config_t configuration = {0xffff, 0, 0, VOLUME, 0.5f, DEFAULT_MIDI_CHANNEL};
bool eeprom_update_flag = false;
value_change_t soften_volume = {0.0, 0};
value_change_t soften_filter_res = {0.0, 0};
value_change_t soften_filter_cut = {0.0, 0};
void setup()
{
//while (!Serial) ; // wait for Arduino Serial Monitor
Serial.begin(SERIAL_SPEED);
#ifdef I2C_DISPLAY
lcd.init();
lcd.blink_off();
lcd.cursor_off();
lcd.backlight();
lcd.noAutoscroll();
lcd.clear();
lcd.display();
lcd.show(0, 0, 16, "MicroDexed");
lcd.show(0, 11, 16, VERSION);
lcd.show(1, 0, 16, "(c)parasiTstudio");
pinMode(BUT_L_PIN, INPUT_PULLUP);
pinMode(BUT_R_PIN, INPUT_PULLUP);
#endif
delay(220);
Serial.println(F("MicroDexed based on https://github.com/asb2m10/dexed"));
Serial.println(F("(c)2018,2019 H. Wirtz <wirtz@parasitstudio.de>"));
Serial.println(F("https://codeberg.org/dcoredump/MicroDexed"));
Serial.print(F("Version: "));
Serial.println(VERSION);
Serial.println(F("<setup start>"));
initial_values_from_eeprom();
setup_midi_devices();
// start audio card
AudioNoInterrupts();
AudioMemory(AUDIO_MEM);
#ifdef TEENSY_AUDIO_BOARD
sgtl5000_1.enable();
sgtl5000_1.dacVolumeRamp();
//sgtl5000_1.dacVolumeRampLinear();
//sgtl5000_1.dacVolumeRampDisable();
sgtl5000_1.unmuteHeadphone();
sgtl5000_1.unmuteLineout();
sgtl5000_1.autoVolumeDisable(); // turn off AGC
sgtl5000_1.volume(0.5, 0.5); // Headphone volume
sgtl5000_1.lineOutLevel(SGTL5000_LINEOUT_LEVEL);
sgtl5000_1.audioPostProcessorEnable();
sgtl5000_1.autoVolumeControl(1, 1, 1, 0.9, 0.01, 0.05);
sgtl5000_1.autoVolumeEnable();
sgtl5000_1.surroundSoundEnable();
sgtl5000_1.surroundSound(7, 2); // Configures virtual surround width from 0 (mono) to 7 (widest). select may be set to 1 (disable), 2 (mono input) or 3 (stereo input).
sgtl5000_1.enhanceBassEnable();
sgtl5000_1.enhanceBass(1.0, 0.2, 1, 2); // Configures the bass enhancement by setting the levels of the original stereo signal and the bass-enhanced mono level which will be mixed together. The high-pass filter may be enabled (0) or bypassed (1).
/* The cutoff frequency is specified as follows:
value frequency
0 80Hz
1 100Hz
2 125Hz
3 150Hz
4 175Hz
5 200Hz
6 225Hz
*/
//sgtl5000_1.eqBands(bass, mid_bass, midrange, mid_treble, treble);
Serial.println(F("Teensy-Audio-Board enabled."));
#elif defined(TGA_AUDIO_BOARD)
wm8731_1.enable();
wm8731_1.volume(1.0);
Serial.println(F("TGA board enabled."));
#else
Serial.println(F("PT8211 enabled."));
#endif
// start SD card
SPI.setMOSI(SDCARD_MOSI_PIN);
SPI.setSCK(SDCARD_SCK_PIN);
if (!SD.begin(SDCARD_CS_PIN))
{
Serial.println(F("SD card not accessable."));
strcpy(bank_name, "Default");
strcpy(voice_name, "Default");
}
else
{
Serial.println(F("SD card found."));
sd_card_available = true;
// read all bank names
max_loaded_banks = get_bank_names();
strip_extension(bank_names[configuration.bank], bank_name);
// read all voice name for actual bank
get_voice_names_from_bank(configuration.bank);
#ifdef DEBUG
Serial.print(F("Bank ["));
Serial.print(bank_names[configuration.bank]);
Serial.print(F("/"));
Serial.print(bank_name);
Serial.println(F("]"));
for (uint8_t n = 0; n < MAX_VOICES; n++)
{
if (n < 10)
Serial.print(F(" "));
Serial.print(F(" "));
Serial.print(n, DEC);
Serial.print(F("["));
Serial.print(voice_names[n]);
Serial.println(F("]"));
}
#endif
// load default SYSEX data
load_sysex(configuration.bank, configuration.voice);
}
// Init effects
delay1.delay(0, mapfloat(effect_delay_feedback, 0, ENC_DELAY_TIME_STEPS, 0.0, DELAY_MAX_TIME));
// mixer1 is the feedback-adding mixer, mixer2 the whole delay (with/without feedback) mixer
mixer1.gain(0, 1.0); // original signal
mixer1.gain(1, mapfloat(effect_delay_feedback, 0, ENC_DELAY_FB_STEPS, 0.0, 1.0)); // amount of feedback
mixer2.gain(0, 1.0 - mapfloat(effect_delay_volume, 0, ENC_DELAY_VOLUME_STEPS, 0.0, 1.0)); // original signal
mixer2.gain(1, mapfloat(effect_delay_volume, 0, ENC_DELAY_VOLUME_STEPS, 0.0, 1.0)); // delayed signal (including feedback)
mixer2.gain(2, mapfloat(effect_delay_volume, 0, ENC_DELAY_VOLUME_STEPS, 0.0, 1.0)); // only delayed signal (without feedback)
dexed->fx.Gain = 1.0;
dexed->fx.Reso = 1.0 - float(effect_filter_resonance) / ENC_FILTER_RES_STEPS;
dexed->fx.Cutoff = 1.0 - float(effect_filter_cutoff) / ENC_FILTER_CUT_STEPS;
// set initial volume and pan (read from EEPROM)
set_volume(configuration.vol, configuration.pan);
#ifdef I2C_DISPLAY
enc[0].write(map(configuration.vol * 100, 0, 100, 0, ENC_VOL_STEPS));
enc_val[0] = enc[0].read();
enc[1].write(configuration.voice);
enc_val[1] = enc[1].read();
but[0].update();
but[1].update();
#endif
#if defined (DEBUG) && defined (SHOW_CPU_LOAD_MSEC)
// Initialize processor and memory measurements
AudioProcessorUsageMaxReset();
AudioMemoryUsageMaxReset();
#endif
#ifdef DEBUG
Serial.print(F("Bank/Voice from EEPROM ["));
Serial.print(configuration.bank, DEC);
Serial.print(F("/"));
Serial.print(configuration.voice, DEC);
Serial.println(F("]"));
show_patch();
#endif
Serial.print(F("AUDIO_BLOCK_SAMPLES="));
Serial.print(AUDIO_BLOCK_SAMPLES);
Serial.print(F(" (Time per block="));
Serial.print(1000000 / (SAMPLE_RATE / AUDIO_BLOCK_SAMPLES));
Serial.println(F("ms)"));
#if defined (DEBUG) && defined (SHOW_CPU_LOAD_MSEC)
show_cpu_and_mem_usage();
#endif
#ifdef I2C_DISPLAY
lcd.clear();
ui_show_main();
#endif
AudioInterrupts();
Serial.println(F("<setup end>"));
}
void loop()
{
int16_t* audio_buffer; // pointer to AUDIO_BLOCK_SAMPLES * int16_t
const uint16_t audio_block_time_us = 1000000 / (SAMPLE_RATE / AUDIO_BLOCK_SAMPLES);
// Main sound calculation
if (queue1.available() && fill_audio_buffer > audio_block_time_us - 10)
{
fill_audio_buffer = 0;
audio_buffer = queue1.getBuffer();
elapsedMicros t1;
dexed->getSamples(AUDIO_BLOCK_SAMPLES, audio_buffer);
if (t1 > audio_block_time_us) // everything greater 2.9ms is a buffer underrun!
xrun++;
if (t1 > render_time_max)
render_time_max = t1;
if (peak1.available())
{
if (peak1.read() > 0.99)
peak++;
}
#ifndef TEENSY_AUDIO_BOARD
for (uint8_t i = 0; i < AUDIO_BLOCK_SAMPLES; i++)
audio_buffer[i] *= configuration.vol;
#endif
queue1.playBuffer();
}
// EEPROM update handling
if (autostore >= AUTOSTORE_MS && active_voices == 0 && eeprom_update_flag == true)
{
// only store configuration data to EEPROM when AUTOSTORE_MS is reached and no voices are activated anymore
eeprom_update();
}
// MIDI input handling
check_midi_devices();
// CONTROL-RATE-EVENT-HANDLING
if (control_rate > CONTROL_RATE_MS)
{
control_rate = 0;
// Shutdown unused voices
active_voices = dexed->getNumNotesPlaying();
// check for value changes
if (soften_volume.steps > 0)
{
// soften volume value
soften_volume.steps--;
set_volume(configuration.vol + soften_volume.diff, configuration.pan);
#ifdef DEBUG
Serial.print(F("Volume: "));
Serial.print(configuration.vol, 5);
Serial.print(F(" Volume step: "));
Serial.print(soften_volume.steps);
Serial.print(F(" Volume diff: "));
Serial.println(soften_volume.diff, 5);
#endif
}
if (soften_filter_res.steps > 0)
{
// soften filter resonance value
soften_filter_res.steps--;
dexed->fx.Reso = dexed->fx.Reso + soften_filter_res.diff;
#ifdef DEBUG
Serial.print(F("Filter-Resonance: "));
Serial.print(dexed->fx.Reso, 5);
Serial.print(F(" Filter-Resonance step: "));
Serial.print(soften_filter_res.steps);
Serial.print(F(" Filter-Resonance diff: "));
Serial.println(soften_filter_res.diff, 5);
#endif
}
if (soften_filter_cut.steps > 0)
{
// soften filter cutoff value
soften_filter_cut.steps--;
dexed->fx.Cutoff = dexed->fx.Cutoff + soften_filter_cut.diff;
#ifdef DEBUG
Serial.print(F("Filter-Cutoff: "));
Serial.print(dexed->fx.Cutoff, 5);
Serial.print(F(" Filter-Cutoff step: "));
Serial.print(soften_filter_cut.steps);
Serial.print(F(" Filter-Cutoff diff: "));
Serial.println(soften_filter_cut.diff, 5);
#endif
}
}
#ifdef I2C_DISPLAY
// UI-HANDLING
if (master_timer >= TIMER_UI_HANDLING_MS)
{
master_timer -= TIMER_UI_HANDLING_MS;
handle_ui();
}
#endif
#if defined (DEBUG) && defined (SHOW_CPU_LOAD_MSEC)
if (cpu_mem_millis >= SHOW_CPU_LOAD_MSEC)
{
cpu_mem_millis -= SHOW_CPU_LOAD_MSEC;
show_cpu_and_mem_usage();
}
#endif
}
/******************************************************************************
MIDI MESSAGE HANDLER
******************************************************************************/
void handleNoteOn(byte inChannel, byte inNumber, byte inVelocity)
{
if (checkMidiChannel(inChannel))
{
dexed->keydown(inNumber, inVelocity);
}
}
void handleNoteOff(byte inChannel, byte inNumber, byte inVelocity)
{
if (checkMidiChannel(inChannel))
{
dexed->keyup(inNumber);
}
}
void handleControlChange(byte inChannel, byte inCtrl, byte inValue)
{
if (checkMidiChannel(inChannel))
{
#ifdef DEBUG
Serial.print(F("CC#"));
Serial.print(inCtrl, DEC);
Serial.print(F(":"));
Serial.println(inValue, DEC);
#endif
switch (inCtrl) {
case 0:
if (inValue < MAX_BANKS)
{
configuration.bank = inValue;
handle_ui();
}
break;
case 1:
dexed->controllers.modwheel_cc = inValue;
dexed->controllers.refresh();
break;
case 2:
dexed->controllers.breath_cc = inValue;
dexed->controllers.refresh();
break;
case 4:
dexed->controllers.foot_cc = inValue;
dexed->controllers.refresh();
break;
case 7: // Volume
configuration.vol = float(inValue) / 0x7f;
set_volume(configuration.vol, configuration.pan);
break;
case 10: // Pan
configuration.pan = float(inValue) / 128;
set_volume(configuration.vol, configuration.pan);
break;
case 32: // BankSelect LSB
configuration.bank = inValue;
break;
case 64:
dexed->setSustain(inValue > 63);
if (!dexed->getSustain()) {
for (uint8_t note = 0; note < dexed->getMaxNotes(); note++) {
if (dexed->voices[note].sustained && !dexed->voices[note].keydown) {
dexed->voices[note].dx7_note->keyup();
dexed->voices[note].sustained = false;
}
}
}
break;
case 103: // CC 103: filter resonance
effect_filter_resonance = map(inValue, 0, 127, 0, ENC_FILTER_RES_STEPS);
dexed->fx.Reso = 1.0 - float(effect_filter_resonance) / ENC_FILTER_RES_STEPS;
handle_ui();
break;
case 104: // CC 104: filter cutoff
effect_filter_cutoff = map(inValue, 0, 127, 0, ENC_FILTER_CUT_STEPS);
dexed->fx.Cutoff = 1.0 - float(effect_filter_cutoff) / ENC_FILTER_CUT_STEPS;
handle_ui();
break;
case 105: // CC 105: delay time
effect_delay_time = map(inValue, 0, 127, 0, ENC_DELAY_TIME_STEPS);
delay1.delay(0, mapfloat(effect_delay_time, 0, ENC_DELAY_TIME_STEPS, 0.0, DELAY_MAX_TIME));
handle_ui();
break;
case 106: // CC 106: delay feedback
effect_delay_feedback = map(inValue, 0, 127, 0, ENC_DELAY_FB_STEPS);
mixer1.gain(1, mapfloat(float(effect_delay_feedback), 0, ENC_DELAY_FB_STEPS, 0.0, 1.0));
handle_ui();
break;
case 107: // CC 107: delay volume
effect_delay_volume = map(inValue, 0, 127, 0, ENC_DELAY_VOLUME_STEPS);
mixer2.gain(1, mapfloat(effect_delay_volume, 0, ENC_DELAY_VOLUME_STEPS, 0.0, 1.0)); // delay tap1 signal (with added feedback)
handle_ui();
break;
case 120:
dexed->panic();
break;
case 121:
dexed->resetControllers();
break;
case 123:
dexed->notesOff();
break;
case 126:
dexed->setMonoMode(true);
break;
case 127:
dexed->setMonoMode(false);
break;
}
}
}
void handleAfterTouch(byte inChannel, byte inPressure)
{
dexed->controllers.aftertouch_cc = inPressure;
dexed->controllers.refresh();
}
void handlePitchBend(byte inChannel, int inPitch)
{
dexed->controllers.values_[kControllerPitch] = inPitch + 0x2000; // -8192 to +8191 --> 0 to 16383
}
void handleProgramChange(byte inChannel, byte inProgram)
{
if (inProgram < MAX_VOICES)
{
load_sysex(configuration.bank, inProgram);
handle_ui();
}
}
void handleSystemExclusive(byte * sysex, uint len)
{
/*
SYSEX MESSAGE: Parameter Change
-------------------------------
bits hex description
11110000 F0 Status byte - start sysex
0iiiiiii 43 ID # (i=67; Yamaha)
0sssnnnn 10 Sub-status (s=1) & channel number (n=0; ch 1)
0gggggpp ** parameter group # (g=0; voice, g=2; function)
0ppppppp ** parameter # (these are listed in next section)
Note that voice parameter #'s can go over 128 so
the pp bits in the group byte are either 00 for
par# 0-127 or 01 for par# 128-155. In the latter case
you add 128 to the 0ppppppp byte to compute par#.
0ddddddd ** data byte
11110111 F7 Status - end sysex
*/
#ifdef DEBUG
Serial.print(F("SYSEX-Data["));
Serial.print(len, DEC);
Serial.print(F("]"));
for (uint8_t i = 0; i < len; i++)
{
Serial.print(F(" "));
Serial.print(sysex[i], DEC);
}
Serial.println();
#endif
if (!checkMidiChannel((sysex[2] & 0x0f) + 1 ))
{
#ifdef DEBUG
Serial.println(F("SYSEX-MIDI-Channel mismatch"));
#endif
return;
}
if (sysex[1] != 0x43) // check for Yamaha sysex
{
#ifdef DEBUG
Serial.println(F("E: SysEx vendor not Yamaha."));
#endif
return;
}
#ifdef DEBUG
Serial.print(F("Substatus: ["));
Serial.print((sysex[2] & 0x70) >> 4);
Serial.println(F("]"));
#endif
// parse parameter change
if (len == 7)
{
if (((sysex[3] & 0x7c) >> 2) != 0 && ((sysex[3] & 0x7c) >> 2) != 2)
{
#ifdef DEBUG
Serial.println(F("E: Not a SysEx parameter or function parameter change."));
#endif
return;
}
if (sysex[6] != 0xf7)
{
#ifdef DEBUG
Serial.println(F("E: SysEx end status byte not detected."));
#endif
return;
}
sysex[4] &= 0x7f;
sysex[5] &= 0x7f;
uint8_t data_index;
if (((sysex[3] & 0x7c) >> 2) == 0)
{
dexed->notesOff();
dexed->data[sysex[4] + ((sysex[3] & 0x03) * 128)] = sysex[5]; // set parameter
dexed->doRefreshVoice();
data_index = sysex[4] + ((sysex[3] & 0x03) * 128);
}
else
{
dexed->data[DEXED_GLOBAL_PARAMETER_OFFSET - 63 + sysex[4]] = sysex[5]; // set function parameter
dexed->controllers.values_[kControllerPitchRange] = dexed->data[DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_PITCHBEND_RANGE];
dexed->controllers.values_[kControllerPitchStep] = dexed->data[DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_PITCHBEND_STEP];
dexed->controllers.wheel.setRange(dexed->data[DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_MODWHEEL_RANGE]);
dexed->controllers.wheel.setTarget(dexed->data[DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_MODWHEEL_ASSIGN]);
dexed->controllers.foot.setRange(dexed->data[DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_FOOTCTRL_RANGE]);
dexed->controllers.foot.setTarget(dexed->data[DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_FOOTCTRL_ASSIGN]);
dexed->controllers.breath.setRange(dexed->data[DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_BREATHCTRL_RANGE]);
dexed->controllers.breath.setTarget(dexed->data[DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_BREATHCTRL_ASSIGN]);
dexed->controllers.at.setRange(dexed->data[DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_AT_RANGE]);
dexed->controllers.at.setTarget(dexed->data[DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_AT_ASSIGN]);
dexed->controllers.masterTune = (dexed->data[DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_MASTER_TUNE] * 0x4000 << 11) * (1.0 / 12);
dexed->controllers.refresh();
data_index = DEXED_GLOBAL_PARAMETER_OFFSET - 63 + sysex[4];
}
#ifdef DEBUG
Serial.print(F("SysEx"));
if (((sysex[3] & 0x7c) >> 2) == 0)
Serial.print(F(" function"));
Serial.print(F(" parameter "));
Serial.print(sysex[4], DEC);
Serial.print(F(" = "));
Serial.print(sysex[5], DEC);
Serial.print(F(", data_index = "));
Serial.println(data_index, DEC);
#endif
}
#ifdef DEBUG
else
Serial.println(F("E: SysEx parameter length wrong."));
#endif
}
void handleTimeCodeQuarterFrame(byte data)
{
;
}
void handleAfterTouchPoly(byte inChannel, byte inNumber, byte inVelocity)
{
;
}
void handleSongSelect(byte inSong)
{
;
}
void handleTuneRequest(void)
{
;
}
void handleClock(void)
{
midi_timing_counter++;
if (midi_timing_counter % 24 == 0)
{
midi_timing_quarter = midi_timing_timestep;
midi_timing_counter = 0;
midi_timing_timestep = 0;
// Adjust delay control here
#ifdef DEBUG
Serial.print(F("MIDI Clock: "));
Serial.print(60000 / midi_timing_quarter, DEC);
Serial.print(F("bpm ("));
Serial.print(midi_timing_quarter, DEC);
Serial.println(F("ms per quarter)"));
#endif
}
}
void handleStart(void)
{
;
}
void handleContinue(void)
{
;
}
void handleStop(void)
{
;
}
void handleActiveSensing(void)
{
;
}
void handleSystemReset(void)
{
#ifdef DEBUG
Serial.println(F("MIDI SYSEX RESET"));
#endif
dexed->notesOff();
dexed->panic();
dexed->resetControllers();
}
/******************************************************************************
MIDI HELPER
******************************************************************************/
bool checkMidiChannel(byte inChannel)
{
// check for MIDI channel
if (configuration.midi_channel == MIDI_CHANNEL_OMNI)
{
return (true);
}
else if (inChannel != configuration.midi_channel)
{
#ifdef DEBUG
Serial.print(F("Ignoring MIDI data on channel "));
Serial.print(inChannel);
Serial.print(F("(listening on "));
Serial.print(configuration.midi_channel);
Serial.println(F(")"));
#endif
return (false);
}
return (true);
}
/******************************************************************************
VOLUME HELPER
******************************************************************************/
void set_volume(float v, float p)
{
configuration.vol = v;
configuration.pan = p;
#ifdef DEBUG
Serial.print(F("Setting volume: VOL="));
Serial.print(v, DEC);
Serial.print(F("["));
Serial.print(configuration.vol, DEC);
Serial.print(F("] PAN="));
Serial.print(F("["));
Serial.print(configuration.pan, DEC);
Serial.print(F("] "));
Serial.print(pow(configuration.vol * sinf(configuration.pan * PI / 2), VOLUME_CURVE), 3);
Serial.print(F("/"));
Serial.println(pow(configuration.vol * cosf( configuration.pan * PI / 2), VOLUME_CURVE), 3);
#endif
dexed->fx.Gain = v;
// http://files.csound-tutorial.net/floss_manual/Release03/Cs_FM_03_ScrapBook/b-panning-and-spatialization.html
volume_r.gain(sinf(p * PI / 2));
volume_l.gain(cosf(p * PI / 2));
}
// https://www.dr-lex.be/info-stuff/volumecontrols.html#table1
inline float logvol(float x)
{
return (0.001 * expf(6.908 * x));
}
/******************************************************************************
EEPROM HELPER
******************************************************************************/
void initial_values_from_eeprom(void)
{
uint32_t checksum;
config_t tmp_conf;
EEPROM_readAnything(EEPROM_START_ADDRESS, tmp_conf);
checksum = crc32((byte*)&tmp_conf + 4, sizeof(tmp_conf) - 4);
#ifdef DEBUG
Serial.print(F("EEPROM checksum: 0x"));
Serial.print(tmp_conf.checksum, HEX);
Serial.print(F(" / 0x"));
Serial.print(checksum, HEX);
#endif
if (checksum != tmp_conf.checksum)
{
#ifdef DEBUG
Serial.print(F(" - mismatch -> initializing EEPROM!"));
#endif
eeprom_update();
}
else
{
EEPROM_readAnything(EEPROM_START_ADDRESS, configuration);
Serial.print(F(" - OK, loading!"));
}
#ifdef DEBUG
Serial.println();
#endif
}
void eeprom_write(void)
{
autostore = 0;
eeprom_update_flag = true;
}
void eeprom_update(void)
{
eeprom_update_flag = false;
configuration.checksum = crc32((byte*)&configuration + 4, sizeof(configuration) - 4);
EEPROM_writeAnything(EEPROM_START_ADDRESS, configuration);
Serial.println(F("Updating EEPROM with configuration data"));
}
uint32_t crc32(byte * calc_start, uint16_t calc_bytes) // base code from https://www.arduino.cc/en/Tutorial/EEPROMCrc
{
const uint32_t crc_table[16] =
{
0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac,
0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c,
0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c,
0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c
};
uint32_t crc = ~0L;
for (byte* index = calc_start ; index < (calc_start + calc_bytes) ; ++index)
{
crc = crc_table[(crc ^ *index) & 0x0f] ^ (crc >> 4);
crc = crc_table[(crc ^ (*index >> 4)) & 0x0f] ^ (crc >> 4);
crc = ~crc;
}
return (crc);
}
/******************************************************************************
DEBUG HELPER
******************************************************************************/
#if defined (DEBUG) && defined (SHOW_CPU_LOAD_MSEC)
void show_cpu_and_mem_usage(void)
{
Serial.print(F("CPU: "));
Serial.print(AudioProcessorUsage(), 2);
Serial.print(F("% CPU MAX: "));
Serial.print(AudioProcessorUsageMax(), 2);
Serial.print(F("% MEM: "));
Serial.print(AudioMemoryUsage(), DEC);
Serial.print(F(" MEM MAX: "));
Serial.print(AudioMemoryUsageMax(), DEC);
Serial.print(F(" RENDER_TIME_MAX: "));
Serial.print(render_time_max, DEC);
Serial.print(F(" XRUN: "));
Serial.print(xrun, DEC);
Serial.print(F(" OVERLOAD: "));
Serial.print(overload, DEC);
Serial.print(F(" PEAK: "));
Serial.print(peak, DEC);
Serial.print(F(" BLOCKSIZE: "));
Serial.print(AUDIO_BLOCK_SAMPLES, DEC);
Serial.print(F(" ACTIVE_VOICES: "));
Serial.print(active_voices, DEC);
Serial.println();
AudioProcessorUsageMaxReset();
AudioMemoryUsageMaxReset();
render_time_max = 0;
}
#endif
#ifdef DEBUG
void show_patch(void)
{
uint8_t i;
char voicename[VOICE_NAME_LEN];
memset(voicename, 0, sizeof(voicename));
for (i = 0; i < 6; i++)
{
Serial.print(F("OP"));
Serial.print(6 - i, DEC);
Serial.println(F(": "));
Serial.println(F("R1 | R2 | R3 | R4 | L1 | L2 | L3 | L4 LEV_SCL_BRK_PT | SCL_LEFT_DEPTH | SCL_RGHT_DEPTH"));
Serial.print(dexed->data[(i * 21) + DEXED_OP_EG_R1], DEC);
Serial.print(F(" "));
Serial.print(dexed->data[(i * 21) + DEXED_OP_EG_R2], DEC);
Serial.print(F(" "));
Serial.print(dexed->data[(i * 21) + DEXED_OP_EG_R3], DEC);
Serial.print(F(" "));
Serial.print(dexed->data[(i * 21) + DEXED_OP_EG_R4], DEC);
Serial.print(F(" "));
Serial.print(dexed->data[(i * 21) + DEXED_OP_EG_L1], DEC);
Serial.print(F(" "));
Serial.print(dexed->data[(i * 21) + DEXED_OP_EG_L2], DEC);
Serial.print(F(" "));
Serial.print(dexed->data[(i * 21) + DEXED_OP_EG_L3], DEC);
Serial.print(F(" "));
Serial.print(dexed->data[(i * 21) + DEXED_OP_EG_L4], DEC);
Serial.print(F(" "));
Serial.print(dexed->data[(i * 21) + DEXED_OP_LEV_SCL_BRK_PT], DEC);
Serial.print(F(" "));
Serial.print(dexed->data[(i * 21) + DEXED_OP_SCL_LEFT_DEPTH], DEC);
Serial.print(F(" "));
Serial.println(dexed->data[(i * 21) + DEXED_OP_SCL_RGHT_DEPTH], DEC);
Serial.println(F("SCL_L_CURVE | SCL_R_CURVE | RT_SCALE | AMS | KVS | OUT_LEV | OP_MOD | FRQ_C | FRQ_F | DETUNE"));
Serial.print(F(" "));
Serial.print(dexed->data[(i * 21) + DEXED_OP_SCL_LEFT_CURVE], DEC);
Serial.print(F(" "));
Serial.print(dexed->data[(i * 21) + DEXED_OP_SCL_RGHT_CURVE], DEC);
Serial.print(F(" "));
Serial.print(dexed->data[(i * 21) + DEXED_OP_OSC_RATE_SCALE], DEC);
Serial.print(F(" "));
Serial.print(dexed->data[(i * 21) + DEXED_OP_AMP_MOD_SENS], DEC);
Serial.print(F(" "));
Serial.print(dexed->data[(i * 21) + DEXED_OP_KEY_VEL_SENS], DEC);
Serial.print(F(" "));
Serial.print(dexed->data[(i * 21) + DEXED_OP_OUTPUT_LEV], DEC);
Serial.print(F(" "));
Serial.print(dexed->data[(i * 21) + DEXED_OP_OSC_MODE], DEC);
Serial.print(F(" "));
Serial.print(dexed->data[(i * 21) + DEXED_OP_FREQ_COARSE], DEC);
Serial.print(F(" "));
Serial.print(dexed->data[(i * 21) + DEXED_OP_FREQ_FINE], DEC);
Serial.print(F(" "));
Serial.println(dexed->data[(i * 21) + DEXED_OP_OSC_DETUNE], DEC);
}
Serial.println(F("PR1 | PR2 | PR3 | PR4 | PL1 | PL2 | PL3 | PL4"));
Serial.print(F(" "));
for (i = 0; i < 8; i++)
{
Serial.print(dexed->data[DEXED_VOICE_OFFSET + i], DEC);
Serial.print(F(" "));
}
Serial.println();
Serial.print(F("ALG: "));
Serial.println(dexed->data[DEXED_VOICE_OFFSET + DEXED_ALGORITHM], DEC);
Serial.print(F("FB: "));
Serial.println(dexed->data[DEXED_VOICE_OFFSET + DEXED_FEEDBACK], DEC);
Serial.print(F("OKS: "));
Serial.println(dexed->data[DEXED_VOICE_OFFSET + DEXED_OSC_KEY_SYNC], DEC);
Serial.print(F("LFO SPD: "));
Serial.println(dexed->data[DEXED_VOICE_OFFSET + DEXED_LFO_SPEED], DEC);
Serial.print(F("LFO_DLY: "));
Serial.println(dexed->data[DEXED_VOICE_OFFSET + DEXED_LFO_DELAY], DEC);
Serial.print(F("LFO PMD: "));
Serial.println(dexed->data[DEXED_VOICE_OFFSET + DEXED_LFO_PITCH_MOD_DEP], DEC);
Serial.print(F("LFO_AMD: "));
Serial.println(dexed->data[DEXED_VOICE_OFFSET + DEXED_LFO_AMP_MOD_DEP], DEC);
Serial.print(F("LFO_SYNC: "));
Serial.println(dexed->data[DEXED_VOICE_OFFSET + DEXED_LFO_SYNC], DEC);
Serial.print(F("LFO_WAVEFRM: "));
Serial.println(dexed->data[DEXED_VOICE_OFFSET + DEXED_LFO_WAVE], DEC);
Serial.print(F("LFO_PMS: "));
Serial.println(dexed->data[DEXED_VOICE_OFFSET + DEXED_LFO_PITCH_MOD_SENS], DEC);
Serial.print(F("TRNSPSE: "));
Serial.println(dexed->data[DEXED_VOICE_OFFSET + DEXED_TRANSPOSE], DEC);
Serial.print(F("NAME: "));
strncpy(voicename, (char *)&dexed->data[DEXED_VOICE_OFFSET + DEXED_NAME], sizeof(voicename) - 1);
Serial.print(F("["));
Serial.print(voicename);
Serial.println(F("]"));
for (i = DEXED_GLOBAL_PARAMETER_OFFSET; i <= DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_MAX_NOTES; i++)
{
Serial.print(i, DEC);
Serial.print(F(": "));
Serial.println(dexed->data[i]);
}
Serial.println();
}
#endif