You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1324 lines
43 KiB
1324 lines
43 KiB
/*
|
|
MicroDexed
|
|
|
|
MicroDexed is a port of the Dexed sound engine
|
|
(https://github.com/asb2m10/dexed) for the Teensy-3.5/3.6 with audio shield.
|
|
Dexed ist heavily based on https://github.com/google/music-synthesizer-for-android
|
|
|
|
(c)2018,2019 H. Wirtz <wirtz@parasitstudio.de>
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software Foundation,
|
|
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
#include <limits.h>
|
|
#include "config.h"
|
|
#include <Audio.h>
|
|
#include <Wire.h>
|
|
#include <SPI.h>
|
|
#include <SD.h>
|
|
#include <MIDI.h>
|
|
#include <EEPROM.h>
|
|
#include "EEPROMAnything.h"
|
|
#include "midi_devices.hpp"
|
|
#include "dexed.h"
|
|
#include "dexed_sysex.h"
|
|
#include "effect_modulated_delay.h"
|
|
#include "effect_stereo_mono.h"
|
|
#include "PluginFx.h"
|
|
#include "SoftenValue.hpp"
|
|
#include "UI.hpp"
|
|
#include "source_microdexed.h"
|
|
|
|
// Audio engines
|
|
AudioAnalyzePeak peak1;
|
|
AudioSourceMicroDexed* MicroDexed[NUM_DEXED];
|
|
AudioEffectDelay delay1;
|
|
AudioEffectModulatedDelay modchorus;
|
|
AudioSynthWaveform modulator;
|
|
AudioMixer4 delay_fb_mixer;
|
|
AudioMixer4 master_mixer_r;
|
|
AudioMixer4 master_mixer_l;
|
|
AudioAmplifier volume_r;
|
|
AudioAmplifier volume_l;
|
|
AudioAmplifier modchorus_inverter;
|
|
#if defined(AUDIO_DEVICE_USB)
|
|
AudioOutputUSB usb1;
|
|
#endif
|
|
AudioEffectStereoMono stereomono1;
|
|
|
|
// Audio connections
|
|
AudioConnection patchCord1(modulator, 0, modchorus, 1);
|
|
#if MOD_FILTER_OUTPUT != MOD_NO_FILTER_OUTPUT
|
|
AudioFilterBiquad modchorus_filter;
|
|
AudioConnection patchCord2(modchorus, modchorus_filter);
|
|
AudioConnection patchCord3(modchorus_filter, 0, master_mixer_r, 3);
|
|
AudioConnection patchCord4(modchorus_filter, modchorus_inverter);
|
|
AudioConnection patchCord5(modchorus_inverter, 0, master_mixer_l, 3);
|
|
#else
|
|
AudioConnection patchCord6(modchorus, 0, master_mixer_r, 3);
|
|
AudioConnection patchCord7(modchorus, modchorus_inverter);
|
|
AudioConnection patchCord8(modchorus_inverter, 0, master_mixer_l, 3);
|
|
#endif
|
|
#if defined(USE_REVERB)
|
|
AudioEffectFreeverbStereo freeverbs1;
|
|
AudioConnection patchCord9(freeverbs1, 0, master_mixer_r, 1);
|
|
AudioConnection patchCord10(freeverbs1, 1, master_mixer_l, 1);
|
|
#endif
|
|
AudioConnection patchCord11(delay_fb_mixer, delay1);
|
|
AudioConnection patchCord12(delay1, 0, delay_fb_mixer, 1);
|
|
AudioConnection patchCord13(delay1, 0, master_mixer_r, 2);
|
|
AudioConnection patchCord14(delay1, 0, master_mixer_l, 2);
|
|
AudioConnection patchCord15(master_mixer_r, volume_r);
|
|
AudioConnection patchCord16(master_mixer_l, volume_l);
|
|
AudioConnection patchCord17(volume_r, 0, stereomono1, 0);
|
|
AudioConnection patchCord18(volume_l, 0, stereomono1, 1);
|
|
#ifdef AUDIO_DEVICE_USB
|
|
AudioConnection patchCord19(stereomono1, 0, usb1, 0);
|
|
AudioConnection patchCord20(stereomono1, 1, usb1, 1);
|
|
#endif
|
|
#if defined(TEENSY_AUDIO_BOARD)
|
|
AudioOutputI2S i2s1;
|
|
AudioConnection patchCord21(stereomono1, 0, i2s1, 0);
|
|
AudioConnection patchCord22(stereomono1, 1, i2s1, 1);
|
|
AudioControlSGTL5000 sgtl5000_1;
|
|
#elif defined (I2S_AUDIO_ONLY)
|
|
AudioOutputI2S i2s1;
|
|
AudioConnection patchCord23(stereomono1, 0, i2s1, 0);
|
|
AudioConnection patchCord24(stereomono1, 1, i2s1, 1);
|
|
#elif defined(TGA_AUDIO_BOARD)
|
|
AudioOutputI2S i2s1;
|
|
AudioConnection patchCord25(stereomono1, 0, i2s1, 0);
|
|
AudioConnection patchCord26(stereomono1, 1, i2s1, 1);
|
|
AudioControlWM8731master wm8731_1;
|
|
#elif defined(PT8211_AUDIO)
|
|
AudioOutputPT8211 pt8211_1;
|
|
AudioConnection patchCord27(stereomono1, 0, pt8211_1, 0);
|
|
AudioConnection patchCord28(stereomono1, 1, pt8211_1, 1);
|
|
#elif defined(TEENSY_DAC_SYMMETRIC)
|
|
AudioOutputAnalogStereo dacOut;
|
|
AudioMixer4 invMixer;
|
|
AudioConnection patchCord29(stereomono1, 0, dacOut , 0);
|
|
AudioConnection patchCord30(stereomono1, 1, invMixer, 0);
|
|
AudioConnection patchCord31(invMixer, 0, dacOut , 1);
|
|
#else
|
|
AudioOutputAnalogStereo dacOut;
|
|
AudioConnection patchCord32(stereomono1, 0, dacOut, 0);
|
|
AudioConnection patchCord33(stereomono1, 1, dacOut, 1);
|
|
#endif
|
|
AudioConnection * dynamicConnections[NUM_DEXED * 7];
|
|
int nDynamic = 0;
|
|
|
|
void create_audio_connections(AudioSourceMicroDexed &d)
|
|
{
|
|
dynamicConnections[nDynamic++] = new AudioConnection(d, peak1);
|
|
dynamicConnections[nDynamic++] = new AudioConnection(d, 0, delay_fb_mixer, 0);
|
|
dynamicConnections[nDynamic++] = new AudioConnection(d, 0, modchorus, 0);
|
|
dynamicConnections[nDynamic++] = new AudioConnection(d, 0 , master_mixer_r, 0);
|
|
dynamicConnections[nDynamic++] = new AudioConnection(d, 0 , master_mixer_l, 0);
|
|
#if defined(USE_REVERB)
|
|
dynamicConnections[nDynamic++] = new AudioConnection(d, 0, freeverbs1, 0);
|
|
dynamicConnections[nDynamic++] = new AudioConnection(d, 0, freeverbs1, 1);
|
|
#endif
|
|
}
|
|
|
|
bool sd_card_available = false;
|
|
uint8_t max_loaded_banks = 0;
|
|
char bank_name[BANK_NAME_LEN];
|
|
char voice_name[VOICE_NAME_LEN];
|
|
char bank_names[MAX_BANKS][BANK_NAME_LEN];
|
|
char voice_names[MAX_VOICES][VOICE_NAME_LEN];
|
|
elapsedMillis autostore;
|
|
uint8_t midi_timing_counter = 0; // 24 per qarter
|
|
elapsedMillis midi_timing_timestep;
|
|
uint16_t midi_timing_quarter = 0;
|
|
elapsedMillis long_button_pressed;
|
|
SoftenValue <uint8_t> soften_volume;
|
|
SoftenValue <uint8_t> soften_filter_res[NUM_DEXED];
|
|
SoftenValue <uint8_t> soften_filter_cut[NUM_DEXED];
|
|
//elapsedMicros fill_audio_buffer;
|
|
elapsedMillis control_rate;
|
|
uint8_t active_voices = 0;
|
|
#ifdef SHOW_CPU_LOAD_MSEC
|
|
elapsedMillis cpu_mem_millis;
|
|
#endif
|
|
//uint32_t overload = 0;
|
|
uint32_t peak = 0;
|
|
bool eeprom_update_flag = false;
|
|
config_t configuration;
|
|
uint8_t selected_dexed_instance = 0;
|
|
|
|
// Allocate the delay lines for chorus
|
|
short delayline[MOD_DELAY_SAMPLE_BUFFER];
|
|
|
|
#ifdef ENABLE_LCD_UI
|
|
/***********************************************************************
|
|
LCDMenuLib2
|
|
***********************************************************************/
|
|
extern LCDMenuLib2 LCDML;
|
|
extern uint8_t menu_state;
|
|
#endif
|
|
|
|
#ifdef DISPLAY_LCD_SPI
|
|
void change_disp_sd(bool disp)
|
|
{
|
|
digitalWrite(SDCARD_CS_PIN, disp);
|
|
digitalWrite(U8X8_CS_PIN, !disp);
|
|
}
|
|
#endif
|
|
|
|
void setup()
|
|
{
|
|
//while (!Serial) ; // wait for Arduino Serial Monitor
|
|
Serial.begin(SERIAL_SPEED);
|
|
#ifdef DISPLAY_LCD_SPI
|
|
pinMode(SDCARD_CS_PIN, OUTPUT);
|
|
pinMode(U8X8_CS_PIN, OUTPUT);
|
|
#endif
|
|
|
|
delay(220); // necessary, because before this time no serial output is done :(
|
|
|
|
#ifdef ENABLE_LCD_UI
|
|
setup_ui();
|
|
#else
|
|
Serial.println(F("NO LCD DISPLAY ENABLED!"));
|
|
#endif
|
|
|
|
Serial.println(F("MicroDexed based on https://github.com/asb2m10/dexed"));
|
|
Serial.println(F("(c)2018,2019 H. Wirtz <wirtz@parasitstudio.de>"));
|
|
Serial.println(F("https://codeberg.org/dcoredump/MicroDexed"));
|
|
Serial.print(F("Version: "));
|
|
Serial.println(VERSION);
|
|
Serial.println(F("<setup start>"));
|
|
|
|
initial_values_from_eeprom();
|
|
|
|
for (uint8_t i = 0; i < NUM_DEXED; i++)
|
|
{
|
|
Serial.print(F("Creating MicroDexed engine "));
|
|
Serial.println(i, DEC);
|
|
MicroDexed[i] = new AudioSourceMicroDexed(SAMPLE_RATE);
|
|
create_audio_connections(*MicroDexed[i]);
|
|
}
|
|
|
|
setup_midi_devices();
|
|
|
|
// start audio card
|
|
AudioNoInterrupts();
|
|
AudioMemory(AUDIO_MEM);
|
|
|
|
#if defined(TEENSY_AUDIO_BOARD)
|
|
sgtl5000_1.enable();
|
|
sgtl5000_1.dacVolumeRamp();
|
|
//sgtl5000_1.dacVolumeRampLinear();
|
|
//sgtl5000_1.dacVolumeRampDisable();
|
|
sgtl5000_1.unmuteHeadphone();
|
|
sgtl5000_1.unmuteLineout();
|
|
sgtl5000_1.autoVolumeDisable(); // turn off AGC
|
|
sgtl5000_1.volume(0.5, 0.5); // Headphone volume
|
|
sgtl5000_1.lineOutLevel(SGTL5000_LINEOUT_LEVEL);
|
|
sgtl5000_1.audioPostProcessorEnable();
|
|
sgtl5000_1.autoVolumeControl(1, 1, 1, 0.9, 0.01, 0.05);
|
|
sgtl5000_1.autoVolumeEnable();
|
|
sgtl5000_1.surroundSoundEnable();
|
|
sgtl5000_1.surroundSound(7, 2); // Configures virtual surround width from 0 (mono) to 7 (widest). select may be set to 1 (disable), 2 (mono input) or 3 (stereo input).
|
|
sgtl5000_1.enhanceBassEnable();
|
|
sgtl5000_1.enhanceBass(1.0, 0.2, 1, 2); // Configures the bass enhancement by setting the levels of the original stereo signal and the bass-enhanced mono level which will be mixed together. The high-pass filter may be enabled (0) or bypassed (1).
|
|
/* The cutoff frequency is specified as follows:
|
|
value frequency
|
|
0 80Hz
|
|
1 100Hz
|
|
2 125Hz
|
|
3 150Hz
|
|
4 175Hz
|
|
5 200Hz
|
|
6 225Hz
|
|
*/
|
|
//sgtl5000_1.eqBands(bass, mid_bass, midrange, mid_treble, treble);
|
|
Serial.println(F("Teensy-Audio-Board enabled."));
|
|
#elif defined(TGA_AUDIO_BOARD)
|
|
wm8731_1.enable();
|
|
wm8731_1.volume(1.0);
|
|
Serial.println(F("TGA board enabled."));
|
|
#elif defined(I2S_AUDIO_ONLY)
|
|
Serial.println(F("I2S enabled."));
|
|
#elif defined(PT8211_AUDIO)
|
|
Serial.println(F("PT8211 enabled."));
|
|
#elif defined(TEENSY_DAC_SYMMETRIC)
|
|
invMixer.gain(0, -1.f);
|
|
Serial.println(F("Internal DAC using symmetric outputs enabled."));
|
|
#else
|
|
Serial.println(F("Internal DAC enabled."));
|
|
#endif
|
|
|
|
// start SD card
|
|
#ifndef TEENSY4
|
|
SPI.setMOSI(SDCARD_MOSI_PIN);
|
|
SPI.setSCK(SDCARD_SCK_PIN);
|
|
#endif
|
|
#ifdef DISPLAY_LCD_SPI
|
|
change_disp_sd(false);
|
|
#endif
|
|
if (!SD.begin(SDCARD_CS_PIN))
|
|
{
|
|
Serial.println(F("SD card not accessable."));
|
|
strcpy(bank_name, "Default");
|
|
strcpy(voice_name, "Default");
|
|
}
|
|
else
|
|
{
|
|
Serial.println(F("SD card found."));
|
|
sd_card_available = true;
|
|
|
|
// read all bank names
|
|
max_loaded_banks = get_bank_names();
|
|
strip_extension(bank_names[configuration.bank[0]], bank_name);
|
|
|
|
// read all voice name for actual bank
|
|
get_voice_names_from_bank(configuration.bank[0]);
|
|
#ifdef DEBUG
|
|
Serial.print(F("Bank ["));
|
|
Serial.print(bank_names[configuration.bank[0]]);
|
|
Serial.print(F("/"));
|
|
Serial.print(bank_name);
|
|
Serial.println(F("]"));
|
|
for (uint8_t n = 0; n < MAX_VOICES; n++)
|
|
{
|
|
if (n < 10)
|
|
Serial.print(F(" "));
|
|
Serial.print(F(" "));
|
|
Serial.print(n, DEC);
|
|
Serial.print(F("["));
|
|
Serial.print(voice_names[n]);
|
|
Serial.println(F("]"));
|
|
}
|
|
#endif
|
|
|
|
// load default SYSEX data
|
|
load_sysex(configuration.bank[0], configuration.voice[0]);
|
|
}
|
|
#ifdef DISPLAY_LCD_SPI
|
|
change_disp_sd(true);
|
|
#endif
|
|
// Init effects
|
|
memset(delayline, 0, MOD_DELAY_SAMPLE_BUFFER);
|
|
if (!modchorus.begin(delayline, MOD_DELAY_SAMPLE_BUFFER)) {
|
|
Serial.println(F("AudioEffectModulatedDelay - begin failed"));
|
|
while (1);
|
|
}
|
|
#ifdef DEBUG
|
|
Serial.print(F("MOD_DELAY_SAMPLE_BUFFER="));
|
|
Serial.print(MOD_DELAY_SAMPLE_BUFFER, DEC);
|
|
Serial.println(F(" samples"));
|
|
#endif
|
|
master_mixer_r.gain(0, 1.0);
|
|
master_mixer_l.gain(0, 1.0);
|
|
|
|
#ifdef USE_REVERB
|
|
// INIT REVERB
|
|
freeverbs1.roomsize(mapfloat(configuration.reverb_roomsize, REVERB_ROOMSIZE_MIN, REVERB_ROOMSIZE_MAX, 0.0, 1.0));
|
|
freeverbs1.damping(mapfloat(configuration.reverb_damping, REVERB_DAMPING_MIN, REVERB_DAMPING_MAX, 0.0, 1.0));
|
|
master_mixer_r.gain(1, mapfloat(configuration.reverb_level[0], REVERB_LEVEL_MIN, REVERB_LEVEL_MAX, 0.0, 1.0));
|
|
master_mixer_l.gain(1, mapfloat(configuration.reverb_level[0], REVERB_LEVEL_MIN, REVERB_LEVEL_MAX, 0.0, 1.0));
|
|
#endif
|
|
|
|
// INIT DELAY
|
|
delay1.delay(0, mapfloat(configuration.delay_time, DELAY_TIME_MIN, DELAY_TIME_MAX, 0.0, float(DELAY_TIME_MAX)));
|
|
// delay_fb_mixer is the feedback-adding mixer
|
|
//delay_fb_mixer.gain(0, 1.0 - (mapfloat(configuration.delay_feedback, DELAY_FEEDBACK_MIN, DELAY_FEEDBACK_MAX, 0.0, 1.0))); // original signal
|
|
delay_fb_mixer.gain(0, 1.0); // original signal
|
|
delay_fb_mixer.gain(1, mapfloat(configuration.delay_feedback, DELAY_FEEDBACK_MIN, DELAY_FEEDBACK_MAX, 0.0, 1.0)); // amount of feedback
|
|
master_mixer_r.gain(2, mapfloat(configuration.delay_level[0], DELAY_LEVEL_MIN, DELAY_LEVEL_MAX, 0.0, 1.0));
|
|
master_mixer_l.gain(2, mapfloat(configuration.delay_level[0], DELAY_LEVEL_MIN, DELAY_LEVEL_MAX, 0.0, 1.0));
|
|
|
|
// INIT CHORUS
|
|
switch (configuration.chorus_waveform)
|
|
{
|
|
case 0:
|
|
modulator.begin(WAVEFORM_TRIANGLE);
|
|
break;
|
|
case 1:
|
|
modulator.begin(WAVEFORM_SINE);
|
|
break;
|
|
default:
|
|
modulator.begin(WAVEFORM_TRIANGLE);
|
|
}
|
|
modulator.phase(0);
|
|
modulator.amplitude(mapfloat(configuration.chorus_depth, CHORUS_DEPTH_MIN, CHORUS_DEPTH_MAX, 0.0, 1.0));
|
|
modulator.offset(0.0);
|
|
#if MOD_FILTER_OUTPUT == MOD_BUTTERWORTH_FILTER_OUTPUT
|
|
// Butterworth filter, 12 db/octave
|
|
modchorus_filter.setLowpass(0, MOD_FILTER_CUTOFF_HZ, 0.707);
|
|
#elif MOD_FILTER_OUTPUT == MOD_LINKWITZ_RILEY_FILTER_OUTPUT
|
|
// Linkwitz-Riley filter, 48 dB/octave
|
|
modchorus_filter.setLowpass(0, MOD_FILTER_CUTOFF_HZ, 0.54);
|
|
modchorus_filter.setLowpass(1, MOD_FILTER_CUTOFF_HZ, 1.3);
|
|
modchorus_filter.setLowpass(2, MOD_FILTER_CUTOFF_HZ, 0.54);
|
|
modchorus_filter.setLowpass(3, MOD_FILTER_CUTOFF_HZ, 1.3);
|
|
#endif
|
|
if (configuration.mono == 0)
|
|
modchorus_inverter.gain(-1.0); // stereo mode
|
|
else
|
|
modchorus_inverter.gain(1.0); // mono mode
|
|
master_mixer_r.gain(3, mapfloat(configuration.chorus_level[0], CHORUS_LEVEL_MIN, CHORUS_LEVEL_MAX, 0.0, 1.0));
|
|
master_mixer_l.gain(3, mapfloat(configuration.chorus_level[0], CHORUS_LEVEL_MIN, CHORUS_LEVEL_MAX, 0.0, 1.0));
|
|
|
|
for (uint8_t i = 0; i < NUM_DEXED; i++)
|
|
{
|
|
soften_filter_res[i].init(configuration.filter_resonance[i]);
|
|
soften_filter_cut[i].init(configuration.filter_cutoff[i]);
|
|
MicroDexed[i]->fx.Gain = mapfloat(configuration.loudness[i], LOUDNESS_MIN, LOUDNESS_MAX, 0.0, 1.0);
|
|
MicroDexed[i]->fx.Reso = mapfloat(configuration.filter_resonance[i], FILTER_RESONANCE_MIN, FILTER_RESONANCE_MAX, 0.0, 1.0);
|
|
MicroDexed[i]->fx.Cutoff = mapfloat(configuration.filter_cutoff[i], FILTER_CUTOFF_MIN, FILTER_CUTOFF_MAX, 0.0, 1.0);
|
|
}
|
|
|
|
// set initial volume and pan (read from EEPROM)
|
|
set_volume(configuration.vol, configuration.pan[0], configuration.mono);
|
|
soften_volume.init(configuration.vol);
|
|
|
|
#if defined (DEBUG) && defined (SHOW_CPU_LOAD_MSEC)
|
|
// Initialize processor and memory measurements
|
|
AudioProcessorUsageMaxReset();
|
|
AudioMemoryUsageMaxReset();
|
|
#endif
|
|
|
|
#ifdef DEBUG
|
|
Serial.print(F("Bank/Voice from EEPROM ["));
|
|
Serial.print(configuration.bank[0], DEC);
|
|
Serial.print(F("/"));
|
|
Serial.print(configuration.voice[0], DEC);
|
|
Serial.println(F("]"));
|
|
show_patch();
|
|
#endif
|
|
|
|
Serial.print(F("AUDIO_BLOCK_SAMPLES="));
|
|
Serial.print(AUDIO_BLOCK_SAMPLES);
|
|
Serial.print(F(" (Time per block="));
|
|
Serial.print(1000000 / (SAMPLE_RATE / AUDIO_BLOCK_SAMPLES));
|
|
Serial.println(F("ms)"));
|
|
|
|
#if defined (DEBUG) && defined (SHOW_CPU_LOAD_MSEC)
|
|
show_cpu_and_mem_usage();
|
|
#endif
|
|
|
|
AudioInterrupts();
|
|
|
|
Serial.println(F("<setup end>"));
|
|
}
|
|
|
|
void loop()
|
|
{
|
|
#ifdef OLD
|
|
int16_t* audio_buffer; // pointer to AUDIO_BLOCK_SAMPLES * int16_t
|
|
const uint16_t audio_block_time_us = 1000000 / (SAMPLE_RATE / AUDIO_BLOCK_SAMPLES);
|
|
#endif
|
|
|
|
//while (42 == 42)
|
|
//{
|
|
#ifdef OLD
|
|
// Main sound calculation
|
|
if (queue1.available() && fill_audio_buffer > audio_block_time_us - 10)
|
|
{
|
|
fill_audio_buffer = 0;
|
|
|
|
audio_buffer = queue1.getBuffer();
|
|
|
|
elapsedMicros t1;
|
|
for (uint8_t i = 0; i < NUM_DEXED; i++)
|
|
{
|
|
MicroDexed[i]->getSamples(AUDIO_BLOCK_SAMPLES, audio_buffer);
|
|
}
|
|
if (t1 > audio_block_time_us) // everything greater 2.9ms is a buffer underrun!
|
|
xrun++;
|
|
if (t1 > render_time_max)
|
|
render_time_max = t1;
|
|
if (peak1.available())
|
|
{
|
|
if (peak1.read() > 0.99)
|
|
peak++;
|
|
}
|
|
queue1.playBuffer();
|
|
}
|
|
#endif
|
|
|
|
// EEPROM update handling
|
|
if (autostore >= AUTOSTORE_MS && active_voices == 0 && eeprom_update_flag == true)
|
|
{
|
|
// only store configuration data to EEPROM when AUTOSTORE_MS is reached and no voices are activated anymore
|
|
eeprom_update();
|
|
}
|
|
|
|
// MIDI input handling
|
|
check_midi_devices();
|
|
|
|
// CONTROL-RATE-EVENT-HANDLING
|
|
if (control_rate > CONTROL_RATE_MS)
|
|
{
|
|
#ifdef ENABLE_LCD_UI
|
|
// LCD Menu
|
|
LCDML.loop();
|
|
|
|
// initial starts voice selection menu as default
|
|
if (menu_state == MENU_START)
|
|
{
|
|
menu_state = MENU_VOICE;
|
|
UI_func_voice_selection(0);
|
|
}
|
|
#endif
|
|
control_rate = 0;
|
|
|
|
// check for value changes and unused voices
|
|
soften_volume.tick();
|
|
|
|
for (uint8_t i = 0; i < NUM_DEXED; i++)
|
|
{
|
|
active_voices = MicroDexed[i]->getNumNotesPlaying();
|
|
|
|
soften_filter_res[i].tick();
|
|
soften_filter_cut[i].tick();
|
|
|
|
if (soften_filter_res[i].running())
|
|
{
|
|
// soften filter resonance value
|
|
MicroDexed[i]->fx.Reso = soften_filter_res[i].value();
|
|
|
|
#ifdef DEBUG
|
|
Serial.print(F("Filter-Resonance: "));
|
|
Serial.print(MicroDexed[i]->fx.Reso, 5);
|
|
Serial.print(F(" Filter-Resonance step: "));
|
|
Serial.print(soften_filter_res[i].steps());
|
|
Serial.print(F(" Filter-Resonance diff: "));
|
|
Serial.println(soften_filter_res[i].diff(), 5);
|
|
#endif
|
|
}
|
|
// soften filter cutoff value
|
|
if (soften_filter_cut[i].running())
|
|
{
|
|
MicroDexed[i]->fx.Cutoff = soften_filter_cut[i].value();
|
|
#ifdef DEBUG
|
|
Serial.print(F("Filter-Cutoff: "));
|
|
Serial.print(MicroDexed[i]->fx.Cutoff, 5);
|
|
Serial.print(F(" Filter-Cutoff step: "));
|
|
Serial.print(soften_filter_cut[i].steps());
|
|
Serial.print(F(" Filter-Cutoff diff: "));
|
|
Serial.println(soften_filter_cut[i].diff(), 5);
|
|
#endif
|
|
}
|
|
}
|
|
if (soften_volume.running())
|
|
{
|
|
set_volume(soften_volume.value(), configuration.pan[0], configuration.mono);
|
|
#ifdef DEBUG
|
|
Serial.print(F("Volume: "));
|
|
Serial.print(configuration.vol, DEC);
|
|
Serial.print(F(" step: "));
|
|
Serial.print(soften_volume.steps());
|
|
Serial.print(F(" diff: "));
|
|
Serial.println(soften_volume.diff(), 5);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
#if defined (DEBUG) && defined (SHOW_CPU_LOAD_MSEC)
|
|
if (cpu_mem_millis >= SHOW_CPU_LOAD_MSEC)
|
|
{
|
|
if (peak1.available())
|
|
{
|
|
if (peak1.read() > 0.99)
|
|
peak++;
|
|
}
|
|
cpu_mem_millis -= SHOW_CPU_LOAD_MSEC;
|
|
show_cpu_and_mem_usage();
|
|
}
|
|
#endif
|
|
//}
|
|
}
|
|
|
|
/******************************************************************************
|
|
MIDI MESSAGE HANDLER
|
|
******************************************************************************/
|
|
void handleNoteOn(byte inChannel, byte inNumber, byte inVelocity)
|
|
{
|
|
if (checkMidiChannel(inChannel))
|
|
{
|
|
MicroDexed[0]->keydown(inNumber, inVelocity);
|
|
}
|
|
}
|
|
|
|
void handleNoteOff(byte inChannel, byte inNumber, byte inVelocity)
|
|
{
|
|
if (checkMidiChannel(inChannel))
|
|
{
|
|
MicroDexed[0]->keyup(inNumber);
|
|
}
|
|
}
|
|
|
|
void handleControlChange(byte inChannel, byte inCtrl, byte inValue)
|
|
{
|
|
if (checkMidiChannel(inChannel))
|
|
{
|
|
#ifdef DEBUG
|
|
Serial.print(F("CC#"));
|
|
Serial.print(inCtrl, DEC);
|
|
Serial.print(F(":"));
|
|
Serial.println(inValue, DEC);
|
|
#endif
|
|
|
|
switch (inCtrl) {
|
|
case 0:
|
|
if (inValue < MAX_BANKS)
|
|
{
|
|
configuration.bank[0] = inValue;
|
|
}
|
|
break;
|
|
case 1:
|
|
for (uint8_t i = 0; i < NUM_DEXED; i++)
|
|
{
|
|
MicroDexed[i]->controllers.modwheel_cc = inValue;
|
|
MicroDexed[i]->controllers.refresh();
|
|
}
|
|
break;
|
|
case 2:
|
|
for (uint8_t i = 0; i < NUM_DEXED; i++)
|
|
{
|
|
MicroDexed[i]->controllers.breath_cc = inValue;
|
|
MicroDexed[i]->controllers.refresh();
|
|
}
|
|
break;
|
|
case 4:
|
|
for (uint8_t i = 0; i < NUM_DEXED; i++)
|
|
{
|
|
MicroDexed[i]->controllers.foot_cc = inValue;
|
|
MicroDexed[i]->controllers.refresh();
|
|
}
|
|
break;
|
|
case 7: // Volume
|
|
configuration.vol = map(inValue, 0, 0x7f, VOLUME_MIN, VOLUME_MAX);
|
|
soften_volume.update(configuration.vol, SOFTEN_VALUE_CHANGE_STEPS);
|
|
break;
|
|
case 10: // Pan
|
|
configuration.pan[0] = map(inValue, 0, 0x7f, PANORAMA_MIN, PANORAMA_MAX);
|
|
set_volume(configuration.vol, configuration.pan[0], configuration.mono);
|
|
break;
|
|
case 32: // BankSelect LSB
|
|
configuration.bank[0] = inValue;
|
|
break;
|
|
case 64:
|
|
for (uint8_t i = 0; i < NUM_DEXED; i++)
|
|
{
|
|
MicroDexed[i]->setSustain(inValue > 63);
|
|
if (!MicroDexed[i]->getSustain()) {
|
|
for (uint8_t note = 0; note < MicroDexed[0]->getMaxNotes(); note++) {
|
|
if (MicroDexed[i]->voices[note].sustained && !MicroDexed[i]->voices[note].keydown) {
|
|
MicroDexed[i]->voices[note].dx7_note->keyup();
|
|
MicroDexed[i]->voices[note].sustained = false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
case 103: // CC 103: filter resonance
|
|
configuration.filter_resonance[0] = map(inValue, 0, 0x7f, FILTER_RESONANCE_MIN, FILTER_RESONANCE_MAX);
|
|
for (uint8_t i = 0; i < NUM_DEXED; i++)
|
|
{
|
|
MicroDexed[i]->fx.Reso = configuration.filter_resonance[i] / 100.0;
|
|
}
|
|
break;
|
|
case 104: // CC 104: filter cutoff
|
|
configuration.filter_cutoff[0] = map(inValue, 0, 0x7f, FILTER_CUTOFF_MIN, FILTER_CUTOFF_MAX);
|
|
for (uint8_t i = 0; i < NUM_DEXED; i++)
|
|
{
|
|
MicroDexed[i]->fx.Cutoff = configuration.filter_cutoff[i] / 100.0;
|
|
}
|
|
break;
|
|
case 105: // CC 105: delay time
|
|
configuration.delay_time = map(inValue, 0, 0x7f, DELAY_TIME_MIN, DELAY_TIME_MAX);
|
|
delay1.delay(0, configuration.delay_time * 10);
|
|
case 106: // CC 106: delay feedback
|
|
configuration.delay_feedback = map(inValue, 0, 0x7f, DELAY_FEEDBACK_MIN , DELAY_FEEDBACK_MAX);
|
|
delay_fb_mixer.gain(1, configuration.delay_feedback / 100.0 ); // amount of feedback
|
|
delay_fb_mixer.gain(0, 1.0 - configuration.delay_feedback / 100.0); // original signalbreak;
|
|
break;
|
|
case 107: // CC 107: delay volume
|
|
configuration.delay_level[0] = map(inValue, 0, 0x7f, DELAY_LEVEL_MIN, DELAY_LEVEL_MAX);
|
|
master_mixer_r.gain(2, configuration.delay_level[0] / 100.0);
|
|
master_mixer_l.gain(2, configuration.delay_level[0] / 100.0);
|
|
break;
|
|
case 120:
|
|
for (uint8_t i = 0; i < NUM_DEXED; i++)
|
|
{
|
|
MicroDexed[i]->panic();
|
|
}
|
|
break;
|
|
case 121:
|
|
for (uint8_t i = 0; i < NUM_DEXED; i++)
|
|
{
|
|
MicroDexed[i]->resetControllers();
|
|
}
|
|
break;
|
|
case 123:
|
|
for (uint8_t i = 0; i < NUM_DEXED; i++)
|
|
{
|
|
MicroDexed[i]->notesOff();
|
|
}
|
|
break;
|
|
case 126:
|
|
for (uint8_t i = 0; i < NUM_DEXED; i++)
|
|
{
|
|
MicroDexed[i]->setMonoMode(true);
|
|
}
|
|
break;
|
|
case 127:
|
|
for (uint8_t i = 0; i < NUM_DEXED; i++)
|
|
{
|
|
MicroDexed[i]->setMonoMode(false);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void handleAfterTouch(byte inChannel, byte inPressure)
|
|
{
|
|
for (uint8_t i = 0; i < NUM_DEXED; i++)
|
|
{
|
|
MicroDexed[i]->controllers.aftertouch_cc = inPressure;
|
|
MicroDexed[i]->controllers.refresh();
|
|
}
|
|
}
|
|
|
|
void handlePitchBend(byte inChannel, int inPitch)
|
|
{
|
|
for (uint8_t i = 0; i < NUM_DEXED; i++)
|
|
{
|
|
MicroDexed[i]->controllers.values_[kControllerPitch] = inPitch + 0x2000; // -8192 to +8191 --> 0 to 16383
|
|
}
|
|
}
|
|
|
|
void handleProgramChange(byte inChannel, byte inProgram)
|
|
{
|
|
if (inProgram < MAX_VOICES)
|
|
{
|
|
#ifdef DISPLAY_LCD_SPI
|
|
change_disp_sd(false);
|
|
#endif
|
|
load_sysex(configuration.bank[0], inProgram);
|
|
#ifdef DISPLAY_LCD_SPI
|
|
change_disp_sd(true);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
void handleSystemExclusive(byte * sysex, uint len)
|
|
{
|
|
/*
|
|
SYSEX MESSAGE: Parameter Change
|
|
-------------------------------
|
|
bits hex description
|
|
|
|
11110000 F0 Status byte - start sysex
|
|
0iiiiiii 43 ID # (i=67; Yamaha)
|
|
0sssnnnn 10 Sub-status (s=1) & channel number (n=0; ch 1)
|
|
0gggggpp ** parameter group # (g=0; voice, g=2; function)
|
|
0ppppppp ** parameter # (these are listed in next section)
|
|
Note that voice parameter #'s can go over 128 so
|
|
the pp bits in the group byte are either 00 for
|
|
par# 0-127 or 01 for par# 128-155. In the latter case
|
|
you add 128 to the 0ppppppp byte to compute par#.
|
|
0ddddddd ** data byte
|
|
11110111 F7 Status - end sysex
|
|
*/
|
|
|
|
#ifdef DEBUG
|
|
Serial.print(F("SYSEX-Data["));
|
|
Serial.print(len, DEC);
|
|
Serial.print(F("]"));
|
|
for (uint8_t i = 0; i < len; i++)
|
|
{
|
|
Serial.print(F(" "));
|
|
Serial.print(sysex[i], DEC);
|
|
}
|
|
Serial.println();
|
|
#endif
|
|
|
|
if (!checkMidiChannel((sysex[2] & 0x0f) + 1 ))
|
|
{
|
|
#ifdef DEBUG
|
|
Serial.println(F("SYSEX-MIDI-Channel mismatch"));
|
|
#endif
|
|
return;
|
|
}
|
|
|
|
if (sysex[1] != 0x43) // check for Yamaha sysex
|
|
{
|
|
#ifdef DEBUG
|
|
Serial.println(F("E: SysEx vendor not Yamaha."));
|
|
#endif
|
|
return;
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
Serial.print(F("Substatus: ["));
|
|
Serial.print((sysex[2] & 0x70) >> 4);
|
|
Serial.println(F("]"));
|
|
#endif
|
|
|
|
// parse parameter change
|
|
if (len == 7)
|
|
{
|
|
if (((sysex[3] & 0x7c) >> 2) != 0 && ((sysex[3] & 0x7c) >> 2) != 2)
|
|
{
|
|
#ifdef DEBUG
|
|
Serial.println(F("E: Not a SysEx parameter or function parameter change."));
|
|
#endif
|
|
return;
|
|
}
|
|
if (sysex[6] != 0xf7)
|
|
{
|
|
#ifdef DEBUG
|
|
Serial.println(F("E: SysEx end status byte not detected."));
|
|
#endif
|
|
return;
|
|
}
|
|
|
|
sysex[4] &= 0x7f;
|
|
sysex[5] &= 0x7f;
|
|
|
|
uint8_t data_index;
|
|
|
|
if (((sysex[3] & 0x7c) >> 2) == 0)
|
|
{
|
|
MicroDexed[0]->notesOff();
|
|
MicroDexed[0]->data[sysex[4] + ((sysex[3] & 0x03) * 128)] = sysex[5]; // set parameter
|
|
MicroDexed[0]->doRefreshVoice();
|
|
data_index = sysex[4] + ((sysex[3] & 0x03) * 128);
|
|
}
|
|
else
|
|
{
|
|
MicroDexed[0]->data[DEXED_GLOBAL_PARAMETER_OFFSET - 63 + sysex[4]] = sysex[5]; // set function parameter
|
|
MicroDexed[0]->controllers.values_[kControllerPitchRange] = MicroDexed[0]->data[DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_PITCHBEND_RANGE];
|
|
MicroDexed[0]->controllers.values_[kControllerPitchStep] = MicroDexed[0]->data[DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_PITCHBEND_STEP];
|
|
MicroDexed[0]->controllers.wheel.setRange(MicroDexed[0]->data[DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_MODWHEEL_RANGE]);
|
|
MicroDexed[0]->controllers.wheel.setTarget(MicroDexed[0]->data[DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_MODWHEEL_ASSIGN]);
|
|
MicroDexed[0]->controllers.foot.setRange(MicroDexed[0]->data[DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_FOOTCTRL_RANGE]);
|
|
MicroDexed[0]->controllers.foot.setTarget(MicroDexed[0]->data[DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_FOOTCTRL_ASSIGN]);
|
|
MicroDexed[0]->controllers.breath.setRange(MicroDexed[0]->data[DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_BREATHCTRL_RANGE]);
|
|
MicroDexed[0]->controllers.breath.setTarget(MicroDexed[0]->data[DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_BREATHCTRL_ASSIGN]);
|
|
MicroDexed[0]->controllers.at.setRange(MicroDexed[0]->data[DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_AT_RANGE]);
|
|
MicroDexed[0]->controllers.at.setTarget(MicroDexed[0]->data[DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_AT_ASSIGN]);
|
|
MicroDexed[0]->controllers.masterTune = (MicroDexed[0]->data[DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_MASTER_TUNE] * 0x4000 << 11) * (1.0 / 12);
|
|
MicroDexed[0]->controllers.refresh();
|
|
data_index = DEXED_GLOBAL_PARAMETER_OFFSET - 63 + sysex[4];
|
|
}
|
|
#ifdef DEBUG
|
|
Serial.print(F("SysEx"));
|
|
if (((sysex[3] & 0x7c) >> 2) == 0)
|
|
Serial.print(F(" function"));
|
|
Serial.print(F(" parameter "));
|
|
Serial.print(sysex[4], DEC);
|
|
Serial.print(F(" = "));
|
|
Serial.print(sysex[5], DEC);
|
|
Serial.print(F(", data_index = "));
|
|
Serial.println(data_index, DEC);
|
|
#endif
|
|
}
|
|
else if (len == 163)
|
|
{
|
|
int32_t bulk_checksum_calc = 0;
|
|
int8_t bulk_checksum = sysex[161];
|
|
|
|
// 1 Voice bulk upload
|
|
#ifdef DEBUG
|
|
Serial.println(F("One Voice bulk upload"));
|
|
#endif
|
|
|
|
if (sysex[162] != 0xf7)
|
|
{
|
|
#ifdef DEBUG
|
|
Serial.println(F("E: Found no SysEx end marker."));
|
|
#endif
|
|
return;
|
|
}
|
|
|
|
if ((sysex[3] & 0x7f) != 0)
|
|
{
|
|
#ifdef DEBUG
|
|
Serial.println(F("E: Not a SysEx voice bulk upload."));
|
|
#endif
|
|
return;
|
|
}
|
|
|
|
if (((sysex[4] << 7) | sysex[5]) != 0x9b)
|
|
{
|
|
#ifdef DEBUG
|
|
Serial.println(F("E: Wrong length for SysEx voice bulk upload (not 155)."));
|
|
#endif
|
|
return;
|
|
}
|
|
|
|
// checksum calculation
|
|
for (uint8_t i = 0; i < 155 ; i++)
|
|
{
|
|
bulk_checksum_calc -= sysex[i + 6];
|
|
}
|
|
bulk_checksum_calc &= 0x7f;
|
|
|
|
if (bulk_checksum_calc != bulk_checksum)
|
|
{
|
|
#ifdef DEBUG
|
|
Serial.print(F("E: Checksum error for one voice [0x"));
|
|
Serial.print(bulk_checksum, HEX);
|
|
Serial.print(F("/0x"));
|
|
Serial.print(bulk_checksum_calc, HEX);
|
|
Serial.println(F("]"));
|
|
#endif
|
|
return;
|
|
}
|
|
|
|
// load sysex-data into voice memory
|
|
MicroDexed[0]->loadVoiceParameters(&sysex[6]);
|
|
//MicroDexed[0]->initGlobalParameters();
|
|
|
|
// manipulate UI names and numbers
|
|
strncpy(voice_name, (char *)&sysex[151], sizeof(voice_name) - 1);
|
|
Serial.print(F("Got voice ["));
|
|
Serial.print(voice_name);
|
|
Serial.println(F("]."));
|
|
}
|
|
#ifdef DEBUG
|
|
else
|
|
Serial.println(F("E: SysEx parameter length wrong."));
|
|
#endif
|
|
}
|
|
|
|
void handleTimeCodeQuarterFrame(byte data)
|
|
{
|
|
;
|
|
}
|
|
|
|
void handleAfterTouchPoly(byte inChannel, byte inNumber, byte inVelocity)
|
|
{
|
|
;
|
|
}
|
|
|
|
void handleSongSelect(byte inSong)
|
|
{
|
|
;
|
|
}
|
|
|
|
void handleTuneRequest(void)
|
|
{
|
|
;
|
|
}
|
|
|
|
void handleClock(void)
|
|
{
|
|
midi_timing_counter++;
|
|
if (midi_timing_counter % 24 == 0)
|
|
{
|
|
midi_timing_quarter = midi_timing_timestep;
|
|
midi_timing_counter = 0;
|
|
midi_timing_timestep = 0;
|
|
// Adjust delay control here
|
|
#ifdef DEBUG
|
|
Serial.print(F("MIDI Clock: "));
|
|
Serial.print(60000 / midi_timing_quarter, DEC);
|
|
Serial.print(F("bpm ("));
|
|
Serial.print(midi_timing_quarter, DEC);
|
|
Serial.println(F("ms per quarter)"));
|
|
#endif
|
|
}
|
|
}
|
|
|
|
void handleStart(void)
|
|
{
|
|
;
|
|
}
|
|
|
|
void handleContinue(void)
|
|
{
|
|
;
|
|
}
|
|
|
|
void handleStop(void)
|
|
{
|
|
;
|
|
}
|
|
|
|
void handleActiveSensing(void)
|
|
{
|
|
;
|
|
}
|
|
|
|
void handleSystemReset(void)
|
|
{
|
|
#ifdef DEBUG
|
|
Serial.println(F("MIDI SYSEX RESET"));
|
|
#endif
|
|
MicroDexed[0]->notesOff();
|
|
MicroDexed[0]->panic();
|
|
MicroDexed[0]->resetControllers();
|
|
}
|
|
|
|
/******************************************************************************
|
|
MIDI HELPER
|
|
******************************************************************************/
|
|
bool checkMidiChannel(byte inChannel)
|
|
{
|
|
// check for MIDI channel
|
|
if (configuration.midi_channel[0] == MIDI_CHANNEL_OMNI)
|
|
{
|
|
return (true);
|
|
}
|
|
else if (inChannel != configuration.midi_channel[0])
|
|
{
|
|
#ifdef DEBUG
|
|
Serial.print(F("Ignoring MIDI data on channel "));
|
|
Serial.print(inChannel);
|
|
Serial.print(F("(listening on "));
|
|
Serial.print(configuration.midi_channel[0]);
|
|
Serial.println(F(")"));
|
|
#endif
|
|
return (false);
|
|
}
|
|
return (true);
|
|
}
|
|
|
|
/******************************************************************************
|
|
VOLUME HELPER
|
|
******************************************************************************/
|
|
|
|
void set_volume(uint8_t v, int8_t p, uint8_t m)
|
|
{
|
|
configuration.vol = v;
|
|
configuration.pan[0] = p;
|
|
configuration.mono = m;
|
|
|
|
uint16_t tmp = v / 100.0 * 1023.0 + 0.5;
|
|
float tmp2 = mapfloat(configuration.pan[0], PANORAMA_MIN, PANORAMA_MAX, 0.0, 1.0);
|
|
float tmp3 = (float)(tmp * (tmp + 2)) / (float)(1 << 20);
|
|
|
|
#ifdef DEBUG
|
|
Serial.print(F("Setting volume: VOL="));
|
|
Serial.print(v, DEC);
|
|
Serial.print(F("["));
|
|
Serial.print(tmp3, 3);
|
|
Serial.print(F("] PAN="));
|
|
Serial.print(p, DEC);
|
|
Serial.print(F("["));
|
|
Serial.print(tmp2, 3);
|
|
Serial.print(F("] "));
|
|
Serial.print(tmp3 * sinf(tmp2 * PI / 2), 3);
|
|
Serial.print(F("/"));
|
|
Serial.println(tmp3 * cosf(tmp2 * PI / 2), 3);
|
|
#endif
|
|
|
|
// float v = (float)(a * (a + 2))/(float)(1 << 20); // (pseudo-) logarithmic curve for volume control
|
|
// http://files.csound-tutorial.net/floss_manual/Release03/Cs_FM_03_ScrapBook/b-panning-and-spatialization.html
|
|
volume_r.gain(tmp3 * sinf(tmp2 * PI / 2));
|
|
volume_l.gain(tmp3 * cosf(tmp2 * PI / 2));
|
|
|
|
switch (m)
|
|
{
|
|
case 0: // stereo
|
|
stereomono1.stereo(true);
|
|
modchorus_inverter.gain(-1.0); // stereo mode
|
|
break;
|
|
case 1: // mono both
|
|
stereomono1.stereo(false);
|
|
configuration.pan[0] = 0.5;
|
|
modchorus_inverter.gain(1.0); // stereo mode
|
|
break;
|
|
case 2: // mono right
|
|
volume_l.gain(0.0);
|
|
stereomono1.stereo(false);
|
|
configuration.pan[0] = 0.5;
|
|
modchorus_inverter.gain(1.0); // stereo mode
|
|
break;
|
|
case 3: // mono left
|
|
volume_r.gain(0.0);
|
|
stereomono1.stereo(false);
|
|
configuration.pan[0] = 0.5;
|
|
modchorus_inverter.gain(1.0); // stereo mode
|
|
break;
|
|
}
|
|
}
|
|
|
|
// https://www.dr-lex.be/info-stuff/volumecontrols.html#table1
|
|
inline float logvol(float x)
|
|
{
|
|
return (0.001 * expf(6.908 * x));
|
|
}
|
|
|
|
/******************************************************************************
|
|
EEPROM HELPER
|
|
******************************************************************************/
|
|
|
|
void initial_values_from_eeprom(void)
|
|
{
|
|
uint32_t checksum;
|
|
config_t tmp_conf;
|
|
|
|
EEPROM_readAnything(EEPROM_START_ADDRESS, tmp_conf);
|
|
checksum = crc32((byte*)&tmp_conf + 4, sizeof(tmp_conf) - 4);
|
|
|
|
#ifdef DEBUG
|
|
Serial.print(F("EEPROM checksum: 0x"));
|
|
Serial.print(tmp_conf.checksum, HEX);
|
|
Serial.print(F(" / 0x"));
|
|
Serial.print(checksum, HEX);
|
|
#endif
|
|
|
|
if (checksum != tmp_conf.checksum)
|
|
{
|
|
#ifdef DEBUG
|
|
Serial.print(F(" - mismatch -> initializing EEPROM!"));
|
|
#endif
|
|
configuration.checksum = 0xffff;
|
|
configuration.bank[0] = SYSEXBANK_DEFAULT;
|
|
configuration.voice[0] = SYSEXSOUND_DEFAULT;
|
|
configuration.vol = VOLUME_DEFAULT;
|
|
configuration.pan[0] = PANORAMA_DEFAULT;
|
|
configuration.mono = MONO_DEFAULT;
|
|
configuration.midi_channel[0] = DEFAULT_MIDI_CHANNEL;
|
|
configuration.reverb_roomsize = REVERB_ROOMSIZE_DEFAULT;
|
|
configuration.reverb_damping = REVERB_DAMPING_DEFAULT;
|
|
configuration.reverb_level[0] = REVERB_LEVEL_DEFAULT;
|
|
configuration.chorus_frequency = CHORUS_FREQUENCY_DEFAULT;
|
|
configuration.chorus_waveform = CHORUS_WAVEFORM_DEFAULT;
|
|
configuration.chorus_depth = CHORUS_DEPTH_DEFAULT;
|
|
configuration.chorus_level[0] = CHORUS_LEVEL_DEFAULT;
|
|
configuration.delay_time = DELAY_TIME_DEFAULT;
|
|
configuration.delay_feedback = DELAY_FEEDBACK_DEFAULT;
|
|
configuration.delay_level[0] = DELAY_LEVEL_DEFAULT;
|
|
configuration.filter_cutoff[0] = FILTER_CUTOFF_DEFAULT;
|
|
configuration.filter_resonance[0] = FILTER_RESONANCE_DEFAULT;
|
|
configuration.loudness[0] = LOUDNESS_DEFAULT;
|
|
configuration.polyphony[0] = POLYPHONY_DEFAULT;
|
|
configuration.engine[0] = ENGINE_DEFAULT;
|
|
eeprom_update();
|
|
}
|
|
else
|
|
{
|
|
EEPROM_readAnything(EEPROM_START_ADDRESS, configuration);
|
|
Serial.print(F(" - OK, loading!"));
|
|
}
|
|
#ifdef DEBUG
|
|
Serial.println();
|
|
show_configuration();
|
|
#endif
|
|
|
|
if (configuration.vol > 100)
|
|
configuration.vol = 100;
|
|
}
|
|
|
|
void eeprom_write(void)
|
|
{
|
|
autostore = 0;
|
|
eeprom_update_flag = true;
|
|
}
|
|
|
|
void eeprom_update(void)
|
|
{
|
|
eeprom_update_flag = false;
|
|
configuration.checksum = crc32((byte*)&configuration + 4, sizeof(configuration) - 4);
|
|
EEPROM_writeAnything(EEPROM_START_ADDRESS, configuration);
|
|
Serial.println(F("Updating EEPROM with configuration data"));
|
|
}
|
|
|
|
uint32_t crc32(byte * calc_start, uint16_t calc_bytes) // base code from https://www.arduino.cc/en/Tutorial/EEPROMCrc
|
|
{
|
|
const uint32_t crc_table[16] =
|
|
{
|
|
0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac,
|
|
0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c,
|
|
0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c,
|
|
0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c
|
|
};
|
|
uint32_t crc = ~0L;
|
|
|
|
for (byte* index = calc_start ; index < (calc_start + calc_bytes) ; ++index)
|
|
{
|
|
crc = crc_table[(crc ^ *index) & 0x0f] ^ (crc >> 4);
|
|
crc = crc_table[(crc ^ (*index >> 4)) & 0x0f] ^ (crc >> 4);
|
|
crc = ~crc;
|
|
}
|
|
|
|
return (crc);
|
|
}
|
|
|
|
/******************************************************************************
|
|
DEBUG HELPER
|
|
******************************************************************************/
|
|
|
|
#if defined (DEBUG) && defined (SHOW_CPU_LOAD_MSEC)
|
|
void show_cpu_and_mem_usage(void)
|
|
{
|
|
Serial.print(F("CPU: "));
|
|
Serial.print(AudioProcessorUsage(), 2);
|
|
Serial.print(F("% CPU MAX: "));
|
|
Serial.print(AudioProcessorUsageMax(), 2);
|
|
Serial.print(F("% MEM: "));
|
|
Serial.print(AudioMemoryUsage(), DEC);
|
|
Serial.print(F(" MEM MAX: "));
|
|
Serial.print(AudioMemoryUsageMax(), DEC);
|
|
Serial.print(F(" RENDER_TIME_MAX: "));
|
|
Serial.print(MicroDexed[0]->render_time_max, DEC);
|
|
Serial.print(F(" XRUN: "));
|
|
Serial.print(MicroDexed[0]->xrun, DEC);
|
|
Serial.print(F(" OVERLOAD: "));
|
|
Serial.print(MicroDexed[0]->overload, DEC);
|
|
Serial.print(F(" PEAK: "));
|
|
Serial.print(peak, DEC);
|
|
Serial.print(F(" BLOCKSIZE: "));
|
|
Serial.print(AUDIO_BLOCK_SAMPLES, DEC);
|
|
Serial.print(F(" ACTIVE_VOICES: "));
|
|
Serial.print(active_voices, DEC);
|
|
Serial.println();
|
|
AudioProcessorUsageMaxReset();
|
|
AudioMemoryUsageMaxReset();
|
|
MicroDexed[0]->render_time_max = 0;
|
|
}
|
|
#endif
|
|
|
|
#ifdef DEBUG
|
|
void show_configuration(void)
|
|
{
|
|
Serial.println();
|
|
Serial.println(F("CONFIGURATION:"));
|
|
Serial.print(F("Checksum 0x")); Serial.println(configuration.checksum, HEX);
|
|
Serial.print(F("Bank ")); Serial.println(configuration.bank[0], DEC);
|
|
Serial.print(F("Voice ")); Serial.println(configuration.voice[0], DEC);
|
|
Serial.print(F("Volume ")); Serial.println(configuration.vol, DEC);
|
|
Serial.print(F("Panorama ")); Serial.println(configuration.pan[0], DEC);
|
|
Serial.print(F("Mono ")); Serial.println(configuration.mono, DEC);
|
|
Serial.print(F("MIDI-Channel ")); Serial.println(configuration.midi_channel[0], DEC);
|
|
Serial.print(F("Reverb Roomsize ")); Serial.println(configuration.reverb_roomsize, DEC);
|
|
Serial.print(F("Reverb Damping ")); Serial.println(configuration.reverb_damping, DEC);
|
|
Serial.print(F("Reverb Level ")); Serial.println(configuration.reverb_level[0], DEC);
|
|
Serial.print(F("Chorus Frequency ")); Serial.println(configuration.chorus_frequency, DEC);
|
|
Serial.print(F("Chorus Waveform ")); Serial.println(configuration.chorus_waveform, DEC);
|
|
Serial.print(F("Chorus Depth ")); Serial.println(configuration.chorus_depth, DEC);
|
|
Serial.print(F("Chorus Level ")); Serial.println(configuration.chorus_level[0], DEC);
|
|
Serial.print(F("Delay Time ")); Serial.println(configuration.delay_time, DEC);
|
|
Serial.print(F("Delay Feedback ")); Serial.println(configuration.delay_feedback, DEC);
|
|
Serial.print(F("Delay Level ")); Serial.println(configuration.delay_level[0], DEC);
|
|
Serial.print(F("Filter Cutoff ")); Serial.println(configuration.filter_cutoff[0], DEC);
|
|
Serial.print(F("Filter Resonance ")); Serial.println(configuration.filter_resonance[0], DEC);
|
|
Serial.print(F("Loudness ")); Serial.println(configuration.loudness[0], DEC);
|
|
Serial.print(F("Polyphony ")); Serial.println(configuration.polyphony[0], DEC);
|
|
Serial.print(F("Engine ")); Serial.println(configuration.engine[0], DEC);
|
|
Serial.println();
|
|
}
|
|
|
|
void show_patch(void)
|
|
{
|
|
uint8_t i;
|
|
char voicename[VOICE_NAME_LEN];
|
|
|
|
memset(voicename, 0, sizeof(voicename));
|
|
for (i = 0; i < 6; i++)
|
|
{
|
|
Serial.print(F("OP"));
|
|
Serial.print(6 - i, DEC);
|
|
Serial.println(F(": "));
|
|
Serial.println(F("R1 | R2 | R3 | R4 | L1 | L2 | L3 | L4 LEV_SCL_BRK_PT | SCL_LEFT_DEPTH | SCL_RGHT_DEPTH"));
|
|
Serial.print(MicroDexed[0]->data[(i * 21) + DEXED_OP_EG_R1], DEC);
|
|
Serial.print(F(" "));
|
|
Serial.print(MicroDexed[0]->data[(i * 21) + DEXED_OP_EG_R2], DEC);
|
|
Serial.print(F(" "));
|
|
Serial.print(MicroDexed[0]->data[(i * 21) + DEXED_OP_EG_R3], DEC);
|
|
Serial.print(F(" "));
|
|
Serial.print(MicroDexed[0]->data[(i * 21) + DEXED_OP_EG_R4], DEC);
|
|
Serial.print(F(" "));
|
|
Serial.print(MicroDexed[0]->data[(i * 21) + DEXED_OP_EG_L1], DEC);
|
|
Serial.print(F(" "));
|
|
Serial.print(MicroDexed[0]->data[(i * 21) + DEXED_OP_EG_L2], DEC);
|
|
Serial.print(F(" "));
|
|
Serial.print(MicroDexed[0]->data[(i * 21) + DEXED_OP_EG_L3], DEC);
|
|
Serial.print(F(" "));
|
|
Serial.print(MicroDexed[0]->data[(i * 21) + DEXED_OP_EG_L4], DEC);
|
|
Serial.print(F(" "));
|
|
Serial.print(MicroDexed[0]->data[(i * 21) + DEXED_OP_LEV_SCL_BRK_PT], DEC);
|
|
Serial.print(F(" "));
|
|
Serial.print(MicroDexed[0]->data[(i * 21) + DEXED_OP_SCL_LEFT_DEPTH], DEC);
|
|
Serial.print(F(" "));
|
|
Serial.println(MicroDexed[0]->data[(i * 21) + DEXED_OP_SCL_RGHT_DEPTH], DEC);
|
|
Serial.println(F("SCL_L_CURVE | SCL_R_CURVE | RT_SCALE | AMS | KVS | OUT_LEV | OP_MOD | FRQ_C | FRQ_F | DETUNE"));
|
|
Serial.print(F(" "));
|
|
Serial.print(MicroDexed[0]->data[(i * 21) + DEXED_OP_SCL_LEFT_CURVE], DEC);
|
|
Serial.print(F(" "));
|
|
Serial.print(MicroDexed[0]->data[(i * 21) + DEXED_OP_SCL_RGHT_CURVE], DEC);
|
|
Serial.print(F(" "));
|
|
Serial.print(MicroDexed[0]->data[(i * 21) + DEXED_OP_OSC_RATE_SCALE], DEC);
|
|
Serial.print(F(" "));
|
|
Serial.print(MicroDexed[0]->data[(i * 21) + DEXED_OP_AMP_MOD_SENS], DEC);
|
|
Serial.print(F(" "));
|
|
Serial.print(MicroDexed[0]->data[(i * 21) + DEXED_OP_KEY_VEL_SENS], DEC);
|
|
Serial.print(F(" "));
|
|
Serial.print(MicroDexed[0]->data[(i * 21) + DEXED_OP_OUTPUT_LEV], DEC);
|
|
Serial.print(F(" "));
|
|
Serial.print(MicroDexed[0]->data[(i * 21) + DEXED_OP_OSC_MODE], DEC);
|
|
Serial.print(F(" "));
|
|
Serial.print(MicroDexed[0]->data[(i * 21) + DEXED_OP_FREQ_COARSE], DEC);
|
|
Serial.print(F(" "));
|
|
Serial.print(MicroDexed[0]->data[(i * 21) + DEXED_OP_FREQ_FINE], DEC);
|
|
Serial.print(F(" "));
|
|
Serial.println(MicroDexed[0]->data[(i * 21) + DEXED_OP_OSC_DETUNE], DEC);
|
|
}
|
|
Serial.println(F("PR1 | PR2 | PR3 | PR4 | PL1 | PL2 | PL3 | PL4"));
|
|
Serial.print(F(" "));
|
|
for (i = 0; i < 8; i++)
|
|
{
|
|
Serial.print(MicroDexed[0]->data[DEXED_VOICE_OFFSET + i], DEC);
|
|
Serial.print(F(" "));
|
|
}
|
|
Serial.println();
|
|
Serial.print(F("ALG: "));
|
|
Serial.println(MicroDexed[0]->data[DEXED_VOICE_OFFSET + DEXED_ALGORITHM], DEC);
|
|
Serial.print(F("FB: "));
|
|
Serial.println(MicroDexed[0]->data[DEXED_VOICE_OFFSET + DEXED_FEEDBACK], DEC);
|
|
Serial.print(F("OKS: "));
|
|
Serial.println(MicroDexed[0]->data[DEXED_VOICE_OFFSET + DEXED_OSC_KEY_SYNC], DEC);
|
|
Serial.print(F("LFO SPD: "));
|
|
Serial.println(MicroDexed[0]->data[DEXED_VOICE_OFFSET + DEXED_LFO_SPEED], DEC);
|
|
Serial.print(F("LFO_DLY: "));
|
|
Serial.println(MicroDexed[0]->data[DEXED_VOICE_OFFSET + DEXED_LFO_DELAY], DEC);
|
|
Serial.print(F("LFO PMD: "));
|
|
Serial.println(MicroDexed[0]->data[DEXED_VOICE_OFFSET + DEXED_LFO_PITCH_MOD_DEP], DEC);
|
|
Serial.print(F("LFO_AMD: "));
|
|
Serial.println(MicroDexed[0]->data[DEXED_VOICE_OFFSET + DEXED_LFO_AMP_MOD_DEP], DEC);
|
|
Serial.print(F("LFO_SYNC: "));
|
|
Serial.println(MicroDexed[0]->data[DEXED_VOICE_OFFSET + DEXED_LFO_SYNC], DEC);
|
|
Serial.print(F("LFO_WAVEFRM: "));
|
|
Serial.println(MicroDexed[0]->data[DEXED_VOICE_OFFSET + DEXED_LFO_WAVE], DEC);
|
|
Serial.print(F("LFO_PMS: "));
|
|
Serial.println(MicroDexed[0]->data[DEXED_VOICE_OFFSET + DEXED_LFO_PITCH_MOD_SENS], DEC);
|
|
Serial.print(F("TRNSPSE: "));
|
|
Serial.println(MicroDexed[0]->data[DEXED_VOICE_OFFSET + DEXED_TRANSPOSE], DEC);
|
|
Serial.print(F("NAME: "));
|
|
strncpy(voicename, (char *)&MicroDexed[0]->data[DEXED_VOICE_OFFSET + DEXED_NAME], sizeof(voicename) - 1);
|
|
Serial.print(F("["));
|
|
Serial.print(voicename);
|
|
Serial.println(F("]"));
|
|
for (i = DEXED_GLOBAL_PARAMETER_OFFSET; i <= DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_MAX_NOTES; i++)
|
|
{
|
|
Serial.print(i, DEC);
|
|
Serial.print(F(": "));
|
|
Serial.println(MicroDexed[0]->data[i]);
|
|
}
|
|
|
|
Serial.println();
|
|
}
|
|
#endif
|
|
|