You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
484 lines
20 KiB
484 lines
20 KiB
/* Stereo plate reverb for Teensy 4
|
|
*
|
|
* Author: Piotr Zapart
|
|
* www.hexefx.com
|
|
*
|
|
* Copyright (c) 2020 by Piotr Zapart
|
|
*
|
|
* Development of this audio library was funded by PJRC.COM, LLC by sales of
|
|
* Teensy and Audio Adaptor boards. Please support PJRC's efforts to develop
|
|
* open source software by purchasing Teensy or other PJRC products.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice, development funding notice, and this permission
|
|
* notice shall be included in all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
|
|
|
|
#include <Arduino.h>
|
|
#include "effect_platervbstereo.h"
|
|
#include "utility/dspinst.h"
|
|
#include "synth_waveform.h"
|
|
|
|
#define INP_ALLP_COEFF (0.65)
|
|
#define LOOP_ALLOP_COEFF (0.65)
|
|
|
|
#define HI_LOSS_FREQ (0.3)
|
|
#define HI_LOSS_FREQ_MAX (0.08)
|
|
#define LO_LOSS_FREQ (0.06)
|
|
|
|
#define LFO_AMPL_BITS (5) // 2^LFO_AMPL_BITS will be the LFO amplitude
|
|
#define LFO_AMPL ((1<<LFO_AMPL_BITS) + 1) // lfo amplitude
|
|
#define LFO_READ_OFFSET (LFO_AMPL>>1) // read offset = half the amplitude
|
|
#define LFO_FRAC_BITS (16 - LFO_AMPL_BITS) // fractional part used for linear interpolation
|
|
#define LFO_FRAC_MASK ((1<<LFO_FRAC_BITS)-1) // mask for the above
|
|
|
|
#define LFO1_FREQ_HZ (1.37) // LFO1 frequency in Hz
|
|
#define LFO2_FREQ_HZ (1.52) // LFO2 frequency in Hz
|
|
|
|
#define RV_MASTER_LOWPASS_F (0.6) // master lowpass scaled frequency coeff.
|
|
|
|
extern "C" {
|
|
extern const int16_t AudioWaveformSine[257];
|
|
}
|
|
|
|
#ifdef REVERB_USE_DMAMEM
|
|
|
|
float32_t DMAMEM input_blockL[AUDIO_BLOCK_SAMPLES];
|
|
float32_t DMAMEM input_blockR[AUDIO_BLOCK_SAMPLES];
|
|
|
|
float32_t DMAMEM in_allp1_bufL[224]; // input allpass buffers
|
|
float32_t DMAMEM in_allp2_bufL[420];
|
|
float32_t DMAMEM in_allp3_bufL[856];
|
|
float32_t DMAMEM in_allp4_bufL[1089];
|
|
|
|
float32_t DMAMEM in_allp1_bufR[156]; // input allpass buffers
|
|
float32_t DMAMEM in_allp2_bufR[520];
|
|
float32_t DMAMEM in_allp3_bufR[956];
|
|
float32_t DMAMEM in_allp4_bufR[1289];
|
|
|
|
float32_t DMAMEM lp_allp1_buf[1303]; // loop allpass buffers
|
|
float32_t DMAMEM lp_allp2_buf[905];
|
|
float32_t DMAMEM lp_allp3_buf[1175];
|
|
float32_t DMAMEM lp_allp4_buf[1398];
|
|
|
|
float32_t DMAMEM lp_dly1_buf[1423];
|
|
float32_t DMAMEM lp_dly2_buf[1589];
|
|
float32_t DMAMEM lp_dly3_buf[1365];
|
|
float32_t DMAMEM lp_dly4_buf[1698];
|
|
#endif
|
|
|
|
AudioEffectPlateReverb::AudioEffectPlateReverb() : AudioStream(2, inputQueueArray)
|
|
{
|
|
input_attn = 0.5;
|
|
in_allp_k = INP_ALLP_COEFF;
|
|
|
|
memset(in_allp1_bufL, 0, sizeof(in_allp1_bufL));
|
|
memset(in_allp2_bufL, 0, sizeof(in_allp2_bufL));
|
|
memset(in_allp3_bufL, 0, sizeof(in_allp3_bufL));
|
|
memset(in_allp4_bufL, 0, sizeof(in_allp4_bufL));
|
|
in_allp1_idxL = 0;
|
|
in_allp2_idxL = 0;
|
|
in_allp3_idxL = 0;
|
|
in_allp4_idxL = 0;
|
|
|
|
memset(in_allp1_bufR, 0, sizeof(in_allp1_bufR));
|
|
memset(in_allp2_bufR, 0, sizeof(in_allp2_bufR));
|
|
memset(in_allp3_bufR, 0, sizeof(in_allp3_bufR));
|
|
memset(in_allp4_bufR, 0, sizeof(in_allp4_bufR));
|
|
in_allp1_idxR = 0;
|
|
in_allp2_idxR = 0;
|
|
in_allp3_idxR = 0;
|
|
in_allp4_idxR = 0;
|
|
|
|
in_allp_out_R = 0;
|
|
|
|
memset(lp_allp1_buf, 0, sizeof(lp_allp1_buf));
|
|
memset(lp_allp2_buf, 0, sizeof(lp_allp2_buf));
|
|
memset(lp_allp3_buf, 0, sizeof(lp_allp3_buf));
|
|
memset(lp_allp4_buf, 0, sizeof(lp_allp4_buf));
|
|
lp_allp1_idx = 0;
|
|
lp_allp2_idx = 0;
|
|
lp_allp3_idx = 0;
|
|
lp_allp4_idx = 0;
|
|
loop_allp_k = LOOP_ALLOP_COEFF;
|
|
lp_allp_out = 0;
|
|
|
|
memset(lp_dly1_buf, 0, sizeof(lp_dly1_buf));
|
|
memset(lp_dly2_buf, 0, sizeof(lp_dly2_buf));
|
|
memset(lp_dly3_buf, 0, sizeof(lp_dly3_buf));
|
|
memset(lp_dly4_buf, 0, sizeof(lp_dly4_buf));
|
|
lp_dly1_idx = 0;
|
|
lp_dly2_idx = 0;
|
|
lp_dly3_idx = 0;
|
|
lp_dly4_idx = 0;
|
|
|
|
lp_hidamp_k = 1.0;
|
|
lp_lodamp_k = 0.0;
|
|
|
|
lp_lowpass_f = HI_LOSS_FREQ;
|
|
lp_hipass_f = LO_LOSS_FREQ;
|
|
|
|
lpf1 = 0;
|
|
lpf2 = 0;
|
|
lpf3 = 0;
|
|
lpf4 = 0;
|
|
|
|
hpf1 = 0;
|
|
hpf2 = 0;
|
|
hpf3 = 0;
|
|
hpf4 = 0;
|
|
|
|
master_lowpass_f = RV_MASTER_LOWPASS_F;
|
|
master_lowpass_l = 0;
|
|
master_lowpass_r = 0;
|
|
|
|
lfo1_phase_acc = 0;
|
|
lfo1_adder = (UINT32_MAX + 1)/(AUDIO_SAMPLE_RATE_EXACT * LFO1_FREQ_HZ);
|
|
lfo2_phase_acc = 0;
|
|
lfo2_adder = (UINT32_MAX + 1)/(AUDIO_SAMPLE_RATE_EXACT * LFO2_FREQ_HZ);
|
|
}
|
|
|
|
#define sat16(n, rshift) signed_saturate_rshift((n), 16, (rshift))
|
|
|
|
// TODO: move this to one of the data files, use in output_adat.cpp, output_tdm.cpp, etc
|
|
static const audio_block_t zeroblock = {
|
|
0, 0, 0, {
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
#if AUDIO_BLOCK_SAMPLES > 16
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
#endif
|
|
#if AUDIO_BLOCK_SAMPLES > 32
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
#endif
|
|
#if AUDIO_BLOCK_SAMPLES > 48
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
#endif
|
|
#if AUDIO_BLOCK_SAMPLES > 64
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
#endif
|
|
#if AUDIO_BLOCK_SAMPLES > 80
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
#endif
|
|
#if AUDIO_BLOCK_SAMPLES > 96
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
#endif
|
|
#if AUDIO_BLOCK_SAMPLES > 112
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
|
#endif
|
|
} };
|
|
|
|
void AudioEffectPlateReverb::update()
|
|
{
|
|
const audio_block_t *blockL, *blockR;
|
|
|
|
#if defined(__ARM_ARCH_7EM__)
|
|
audio_block_t *outblockL;
|
|
audio_block_t *outblockR;
|
|
int i;
|
|
float32_t input, acc, temp1, temp2;
|
|
uint16_t temp16;
|
|
float32_t rv_time;
|
|
|
|
// for LFOs:
|
|
int16_t lfo1_out_sin, lfo1_out_cos, lfo2_out_sin, lfo2_out_cos;
|
|
int32_t y0, y1;
|
|
int64_t y;
|
|
uint32_t idx;
|
|
|
|
blockL = receiveReadOnly(0);
|
|
blockR = receiveReadOnly(1);
|
|
outblockL = allocate();
|
|
outblockR = allocate();
|
|
if (!outblockL || !outblockR) {
|
|
if (outblockL) release(outblockL);
|
|
if (outblockR) release(outblockR);
|
|
if (blockL) release((audio_block_t *)blockL);
|
|
if (blockR) release((audio_block_t *)blockR);
|
|
return;
|
|
}
|
|
|
|
if (!blockL) blockL = &zeroblock;
|
|
if (!blockR) blockR = &zeroblock;
|
|
// convert data to float32
|
|
arm_q15_to_float((q15_t *)blockL->data, input_blockL, AUDIO_BLOCK_SAMPLES);
|
|
arm_q15_to_float((q15_t *)blockR->data, input_blockR, AUDIO_BLOCK_SAMPLES);
|
|
|
|
rv_time = rv_time_k;
|
|
|
|
for (i=0; i < AUDIO_BLOCK_SAMPLES; i++)
|
|
{
|
|
// do the LFOs
|
|
lfo1_phase_acc += lfo1_adder;
|
|
idx = lfo1_phase_acc >> 24; // 8bit lookup table address
|
|
y0 = AudioWaveformSine[idx];
|
|
y1 = AudioWaveformSine[idx+1];
|
|
idx = lfo1_phase_acc & 0x00FFFFFF; // lower 24 bit = fractional part
|
|
y = (int64_t)y0 * (0x00FFFFFF - idx);
|
|
y += (int64_t)y1 * idx;
|
|
lfo1_out_sin = (int32_t) (y >> (32-8)); // 16bit output
|
|
idx = ((lfo1_phase_acc >> 24)+64) & 0xFF;
|
|
y0 = AudioWaveformSine[idx];
|
|
y1 = AudioWaveformSine[idx + 1];
|
|
y = (int64_t)y0 * (0x00FFFFFF - idx);
|
|
y += (int64_t)y1 * idx;
|
|
lfo1_out_cos = (int32_t) (y >> (32-8)); // 16bit output
|
|
|
|
lfo2_phase_acc += lfo2_adder;
|
|
idx = lfo2_phase_acc >> 24; // 8bit lookup table address
|
|
y0 = AudioWaveformSine[idx];
|
|
y1 = AudioWaveformSine[idx+1];
|
|
idx = lfo2_phase_acc & 0x00FFFFFF; // lower 24 bit = fractional part
|
|
y = (int64_t)y0 * (0x00FFFFFF - idx);
|
|
y += (int64_t)y1 * idx;
|
|
lfo2_out_sin = (int32_t) (y >> (32-8)); //32-8->output 16bit,
|
|
idx = ((lfo2_phase_acc >> 24)+64) & 0xFF;
|
|
y0 = AudioWaveformSine[idx];
|
|
y1 = AudioWaveformSine[idx + 1];
|
|
y = (int64_t)y0 * (0x00FFFFFF - idx);
|
|
y += (int64_t)y1 * idx;
|
|
lfo2_out_cos = (int32_t) (y >> (32-8)); // 16bit output
|
|
|
|
input = input_blockL[i] * input_attn;
|
|
// chained input allpasses, channel L
|
|
acc = in_allp1_bufL[in_allp1_idxL] + input * in_allp_k;
|
|
in_allp1_bufL[in_allp1_idxL] = input - in_allp_k * acc;
|
|
input = acc;
|
|
if (++in_allp1_idxL >= sizeof(in_allp1_bufL)/sizeof(float32_t)) in_allp1_idxL = 0;
|
|
|
|
acc = in_allp2_bufL[in_allp2_idxL] + input * in_allp_k;
|
|
in_allp2_bufL[in_allp2_idxL] = input - in_allp_k * acc;
|
|
input = acc;
|
|
if (++in_allp2_idxL >= sizeof(in_allp2_bufL)/sizeof(float32_t)) in_allp2_idxL = 0;
|
|
|
|
acc = in_allp3_bufL[in_allp3_idxL] + input * in_allp_k;
|
|
in_allp3_bufL[in_allp3_idxL] = input - in_allp_k * acc;
|
|
input = acc;
|
|
if (++in_allp3_idxL >= sizeof(in_allp3_bufL)/sizeof(float32_t)) in_allp3_idxL = 0;
|
|
|
|
acc = in_allp4_bufL[in_allp4_idxL] + input * in_allp_k;
|
|
in_allp4_bufL[in_allp4_idxL] = input - in_allp_k * acc;
|
|
in_allp_out_L = acc;
|
|
if (++in_allp4_idxL >= sizeof(in_allp4_bufL)/sizeof(float32_t)) in_allp4_idxL = 0;
|
|
|
|
input = input_blockR[i] * input_attn;
|
|
|
|
// chained input allpasses, channel R
|
|
acc = in_allp1_bufR[in_allp1_idxR] + input * in_allp_k;
|
|
in_allp1_bufR[in_allp1_idxR] = input - in_allp_k * acc;
|
|
input = acc;
|
|
if (++in_allp1_idxR >= sizeof(in_allp1_bufR)/sizeof(float32_t)) in_allp1_idxR = 0;
|
|
|
|
acc = in_allp2_bufR[in_allp2_idxR] + input * in_allp_k;
|
|
in_allp2_bufR[in_allp2_idxR] = input - in_allp_k * acc;
|
|
input = acc;
|
|
if (++in_allp2_idxR >= sizeof(in_allp2_bufR)/sizeof(float32_t)) in_allp2_idxR = 0;
|
|
|
|
acc = in_allp3_bufR[in_allp3_idxR] + input * in_allp_k;
|
|
in_allp3_bufR[in_allp3_idxR] = input - in_allp_k * acc;
|
|
input = acc;
|
|
if (++in_allp3_idxR >= sizeof(in_allp3_bufR)/sizeof(float32_t)) in_allp3_idxR = 0;
|
|
|
|
acc = in_allp4_bufR[in_allp4_idxR] + input * in_allp_k;
|
|
in_allp4_bufR[in_allp4_idxR] = input - in_allp_k * acc;
|
|
in_allp_out_R = acc;
|
|
if (++in_allp4_idxR >= sizeof(in_allp4_bufR)/sizeof(float32_t)) in_allp4_idxR = 0;
|
|
|
|
// input allpases done, start loop allpases
|
|
input = lp_allp_out + in_allp_out_R;
|
|
acc = lp_allp1_buf[lp_allp1_idx] + input * loop_allp_k; // input is the lp allpass chain output
|
|
lp_allp1_buf[lp_allp1_idx] = input - loop_allp_k * acc;
|
|
input = acc;
|
|
if (++lp_allp1_idx >= sizeof(lp_allp1_buf)/sizeof(float32_t)) lp_allp1_idx = 0;
|
|
|
|
acc = lp_dly1_buf[lp_dly1_idx]; // read the end of the delay
|
|
lp_dly1_buf[lp_dly1_idx] = input; // write new sample
|
|
input = acc;
|
|
if (++lp_dly1_idx >= sizeof(lp_dly1_buf)/sizeof(float32_t)) lp_dly1_idx = 0; // update index
|
|
|
|
// hi/lo shelving filter
|
|
temp1 = input - lpf1;
|
|
lpf1 += temp1 * lp_lowpass_f;
|
|
temp2 = input - lpf1;
|
|
temp1 = lpf1 - hpf1;
|
|
hpf1 += temp1 * lp_hipass_f;
|
|
acc = lpf1 + temp2*lp_hidamp_k + hpf1*lp_lodamp_k;
|
|
acc = acc * rv_time * rv_time_scaler; // scale by the reveb time
|
|
|
|
input = acc + in_allp_out_L;
|
|
|
|
acc = lp_allp2_buf[lp_allp2_idx] + input * loop_allp_k;
|
|
lp_allp2_buf[lp_allp2_idx] = input - loop_allp_k * acc;
|
|
input = acc;
|
|
if (++lp_allp2_idx >= sizeof(lp_allp2_buf)/sizeof(float32_t)) lp_allp2_idx = 0;
|
|
acc = lp_dly2_buf[lp_dly2_idx]; // read the end of the delay
|
|
lp_dly2_buf[lp_dly2_idx] = input; // write new sample
|
|
input = acc;
|
|
if (++lp_dly2_idx >= sizeof(lp_dly2_buf)/sizeof(float32_t)) lp_dly2_idx = 0; // update index
|
|
// hi/lo shelving filter
|
|
temp1 = input - lpf2;
|
|
lpf2 += temp1 * lp_lowpass_f;
|
|
temp2 = input - lpf2;
|
|
temp1 = lpf2 - hpf2;
|
|
hpf2 += temp1 * lp_hipass_f;
|
|
acc = lpf2 + temp2*lp_hidamp_k + hpf2*lp_lodamp_k;
|
|
acc = acc * rv_time * rv_time_scaler;
|
|
|
|
input = acc + in_allp_out_R;
|
|
|
|
acc = lp_allp3_buf[lp_allp3_idx] + input * loop_allp_k;
|
|
lp_allp3_buf[lp_allp3_idx] = input - loop_allp_k * acc;
|
|
input = acc;
|
|
if (++lp_allp3_idx >= sizeof(lp_allp3_buf)/sizeof(float32_t)) lp_allp3_idx = 0;
|
|
acc = lp_dly3_buf[lp_dly3_idx]; // read the end of the delay
|
|
lp_dly3_buf[lp_dly3_idx] = input; // write new sample
|
|
input = acc;
|
|
if (++lp_dly3_idx >= sizeof(lp_dly3_buf)/sizeof(float32_t)) lp_dly3_idx = 0; // update index
|
|
// hi/lo shelving filter
|
|
temp1 = input - lpf3;
|
|
lpf3 += temp1 * lp_lowpass_f;
|
|
temp2 = input - lpf3;
|
|
temp1 = lpf3 - hpf3;
|
|
hpf3 += temp1 * lp_hipass_f;
|
|
acc = lpf3 + temp2*lp_hidamp_k + hpf3*lp_lodamp_k;
|
|
acc = acc * rv_time * rv_time_scaler;
|
|
|
|
input = acc + in_allp_out_L;
|
|
|
|
acc = lp_allp4_buf[lp_allp4_idx] + input * loop_allp_k;
|
|
lp_allp4_buf[lp_allp4_idx] = input - loop_allp_k * acc;
|
|
input = acc;
|
|
if (++lp_allp4_idx >= sizeof(lp_allp4_buf)/sizeof(float32_t)) lp_allp4_idx = 0;
|
|
acc = lp_dly4_buf[lp_dly4_idx]; // read the end of the delay
|
|
lp_dly4_buf[lp_dly4_idx] = input; // write new sample
|
|
input = acc;
|
|
if (++lp_dly4_idx >= sizeof(lp_dly4_buf)/sizeof(float32_t)) lp_dly4_idx= 0; // update index
|
|
// hi/lo shelving filter
|
|
temp1 = input - lpf4;
|
|
lpf4 += temp1 * lp_lowpass_f;
|
|
temp2 = input - lpf4;
|
|
temp1 = lpf4 - hpf4;
|
|
hpf4 += temp1 * lp_hipass_f;
|
|
acc = lpf4 + temp2*lp_hidamp_k + hpf4*lp_lodamp_k;
|
|
acc = acc * rv_time * rv_time_scaler;
|
|
|
|
lp_allp_out = acc;
|
|
|
|
// channel L:
|
|
#ifdef TAP1_MODULATED
|
|
temp16 = (lp_dly1_idx + lp_dly1_offset_L + (lfo1_out_cos>>LFO_FRAC_BITS)) % (sizeof(lp_dly1_buf)/sizeof(float32_t));
|
|
temp1 = lp_dly1_buf[temp16++]; // sample now
|
|
if (temp16 >= sizeof(lp_dly1_buf)/sizeof(float32_t)) temp16 = 0;
|
|
temp2 = lp_dly1_buf[temp16]; // sample next
|
|
input = (float32_t)(lfo1_out_cos & LFO_FRAC_MASK) / ((float32_t)LFO_FRAC_MASK); // interp. k
|
|
acc = (temp1*(1.0-input) + temp2*input)* 0.8;
|
|
#else
|
|
temp16 = (lp_dly1_idx + lp_dly1_offset_L) % (sizeof(lp_dly1_buf)/sizeof(float32_t));
|
|
acc = lp_dly1_buf[temp16]* 0.8;
|
|
#endif
|
|
|
|
|
|
#ifdef TAP2_MODULATED
|
|
temp16 = (lp_dly2_idx + lp_dly2_offset_L + (lfo1_out_sin>>LFO_FRAC_BITS)) % (sizeof(lp_dly2_buf)/sizeof(float32_t));
|
|
temp1 = lp_dly2_buf[temp16++];
|
|
if (temp16 >= sizeof(lp_dly2_buf)/sizeof(float32_t)) temp16 = 0;
|
|
temp2 = lp_dly2_buf[temp16];
|
|
input = (float32_t)(lfo1_out_sin & LFO_FRAC_MASK) / ((float32_t)LFO_FRAC_MASK); // interp. k
|
|
acc += (temp1*(1.0-input) + temp2*input)* 0.7;
|
|
#else
|
|
temp16 = (lp_dly2_idx + lp_dly2_offset_L) % (sizeof(lp_dly2_buf)/sizeof(float32_t));
|
|
acc += (temp1*(1.0-input) + temp2*input)* 0.6;
|
|
#endif
|
|
|
|
temp16 = (lp_dly3_idx + lp_dly3_offset_L + (lfo2_out_cos>>LFO_FRAC_BITS)) % (sizeof(lp_dly3_buf)/sizeof(float32_t));
|
|
temp1 = lp_dly3_buf[temp16++];
|
|
if (temp16 >= sizeof(lp_dly3_buf)/sizeof(float32_t)) temp16 = 0;
|
|
temp2 = lp_dly3_buf[temp16];
|
|
input = (float32_t)(lfo2_out_cos & LFO_FRAC_MASK) / ((float32_t)LFO_FRAC_MASK); // interp. k
|
|
acc += (temp1*(1.0-input) + temp2*input)* 0.6;
|
|
|
|
temp16 = (lp_dly4_idx + lp_dly4_offset_L + (lfo2_out_sin>>LFO_FRAC_BITS)) % (sizeof(lp_dly4_buf)/sizeof(float32_t));
|
|
temp1 = lp_dly4_buf[temp16++];
|
|
if (temp16 >= sizeof(lp_dly4_buf)/sizeof(float32_t)) temp16 = 0;
|
|
temp2 = lp_dly4_buf[temp16];
|
|
input = (float32_t)(lfo2_out_sin & LFO_FRAC_MASK) / ((float32_t)LFO_FRAC_MASK); // interp. k
|
|
acc += (temp1*(1.0-input) + temp2*input)* 0.5;
|
|
|
|
// Master lowpass filter
|
|
temp1 = acc - master_lowpass_l;
|
|
master_lowpass_l += temp1 * master_lowpass_f;
|
|
|
|
outblockL->data[i] =(int16_t)(master_lowpass_l * 32767.0); //sat16(output * 30, 0);
|
|
|
|
// Channel R
|
|
#ifdef TAP1_MODULATED
|
|
temp16 = (lp_dly1_idx + lp_dly1_offset_R + (lfo2_out_cos>>LFO_FRAC_BITS)) % (sizeof(lp_dly1_buf)/sizeof(float32_t));
|
|
temp1 = lp_dly1_buf[temp16++]; // sample now
|
|
if (temp16 >= sizeof(lp_dly1_buf)/sizeof(float32_t)) temp16 = 0;
|
|
temp2 = lp_dly1_buf[temp16]; // sample next
|
|
input = (float32_t)(lfo2_out_cos & LFO_FRAC_MASK) / ((float32_t)LFO_FRAC_MASK); // interp. k
|
|
|
|
acc = (temp1*(1.0-input) + temp2*input)* 0.8;
|
|
#else
|
|
temp16 = (lp_dly1_idx + lp_dly1_offset_R) % (sizeof(lp_dly1_buf)/sizeof(float32_t));
|
|
acc = lp_dly1_buf[temp16] * 0.8;
|
|
#endif
|
|
#ifdef TAP2_MODULATED
|
|
temp16 = (lp_dly2_idx + lp_dly2_offset_R + (lfo1_out_cos>>LFO_FRAC_BITS)) % (sizeof(lp_dly2_buf)/sizeof(float32_t));
|
|
temp1 = lp_dly2_buf[temp16++];
|
|
if (temp16 >= sizeof(lp_dly2_buf)/sizeof(float32_t)) temp16 = 0;
|
|
temp2 = lp_dly2_buf[temp16];
|
|
input = (float32_t)(lfo1_out_cos & LFO_FRAC_MASK) / ((float32_t)LFO_FRAC_MASK); // interp. k
|
|
acc += (temp1*(1.0-input) + temp2*input)* 0.7;
|
|
#else
|
|
temp16 = (lp_dly2_idx + lp_dly2_offset_R) % (sizeof(lp_dly2_buf)/sizeof(float32_t));
|
|
acc += (temp1*(1.0-input) + temp2*input)* 0.7;
|
|
#endif
|
|
temp16 = (lp_dly3_idx + lp_dly3_offset_R + (lfo2_out_sin>>LFO_FRAC_BITS)) % (sizeof(lp_dly3_buf)/sizeof(float32_t));
|
|
temp1 = lp_dly3_buf[temp16++];
|
|
if (temp16 >= sizeof(lp_dly3_buf)/sizeof(float32_t)) temp16 = 0;
|
|
temp2 = lp_dly3_buf[temp16];
|
|
input = (float32_t)(lfo2_out_sin & LFO_FRAC_MASK) / ((float32_t)LFO_FRAC_MASK); // interp. k
|
|
acc += (temp1*(1.0-input) + temp2*input)* 0.6;
|
|
|
|
temp16 = (lp_dly4_idx + lp_dly4_offset_R + (lfo1_out_sin>>LFO_FRAC_BITS)) % (sizeof(lp_dly4_buf)/sizeof(float32_t));
|
|
temp1 = lp_dly4_buf[temp16++];
|
|
if (temp16 >= sizeof(lp_dly4_buf)/sizeof(float32_t)) temp16 = 0;
|
|
temp2 = lp_dly4_buf[temp16];
|
|
input = (float32_t)(lfo2_out_cos & LFO_FRAC_MASK) / ((float32_t)LFO_FRAC_MASK); // interp. k
|
|
acc += (temp1*(1.0-input) + temp2*input)* 0.5;
|
|
|
|
// Master lowpass filter
|
|
temp1 = acc - master_lowpass_r;
|
|
master_lowpass_r += temp1 * master_lowpass_f;
|
|
outblockR->data[i] =(int16_t)(master_lowpass_r * 32767.0);
|
|
|
|
}
|
|
transmit(outblockL, 0);
|
|
transmit(outblockR, 1);
|
|
release(outblockL);
|
|
release(outblockR);
|
|
if (blockL != &zeroblock) release((audio_block_t *)blockL);
|
|
if (blockR != &zeroblock) release((audio_block_t *)blockR);
|
|
|
|
#elif defined(KINETISL)
|
|
blockL = receiveReadOnly(0);
|
|
if (blockL) release(blockL);
|
|
blockR = receiveReadOnly(1);
|
|
if (blockR) release(blockR);
|
|
#endif
|
|
}
|
|
|