You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1139 lines
36 KiB
1139 lines
36 KiB
/*
|
|
MicroDexed
|
|
|
|
MicroDexed is a port of the Dexed sound engine
|
|
(https://github.com/asb2m10/dexed) for the Teensy-3.5/3.6 with audio shield.
|
|
Dexed ist heavily based on https://github.com/google/music-synthesizer-for-android
|
|
|
|
(c)2018 H. Wirtz <wirtz@parasitstudio.de>
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software Foundation,
|
|
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
#include <Audio.h>
|
|
#include <Wire.h>
|
|
#include <SPI.h>
|
|
#include <SD.h>
|
|
#include <MIDI.h>
|
|
#include <EEPROM.h>
|
|
#include <limits.h>
|
|
#include "dexed.h"
|
|
#include "dexed_sysex.h"
|
|
#include "config.h"
|
|
#ifdef USE_ONBOARD_USB_HOST
|
|
#include <USBHost_t36.h>
|
|
#endif
|
|
|
|
#ifdef I2C_DISPLAY // selecting sounds by encoder, button and display
|
|
#include "UI.h"
|
|
#include <Bounce.h>
|
|
#include "Encoder4.h"
|
|
#include "LiquidCrystalPlus_I2C.h"
|
|
LiquidCrystalPlus_I2C lcd(LCD_I2C_ADDRESS, LCD_CHARS, LCD_LINES);
|
|
Encoder4 enc[2] = {Encoder4(ENC_L_PIN_A, ENC_L_PIN_B), Encoder4(ENC_R_PIN_A, ENC_R_PIN_B)};
|
|
int32_t enc_val[2] = {INITIAL_ENC_L_VALUE, INITIAL_ENC_R_VALUE};
|
|
Bounce but[2] = {Bounce(BUT_L_PIN, BUT_DEBOUNCE_MS), Bounce(BUT_R_PIN, BUT_DEBOUNCE_MS)};
|
|
elapsedMillis master_timer;
|
|
uint8_t ui_state = UI_MAIN;
|
|
uint8_t ui_main_state = UI_MAIN_VOICE;
|
|
#endif
|
|
|
|
// GUItool: begin automatically generated code
|
|
AudioPlayQueue queue1; //xy=179,325
|
|
AudioAnalyzePeak peak1; //xy=348,478
|
|
AudioFilterStateVariable filter1; //xy=415,334
|
|
AudioEffectDelay delay1; //xy=732,485
|
|
AudioMixer4 mixer1; //xy=734,245
|
|
AudioMixer4 mixer2; //xy=1055,317
|
|
AudioConnection patchCord1(queue1, peak1);
|
|
AudioConnection patchCord2(queue1, 0, filter1, 0);
|
|
AudioConnection patchCord3(filter1, 0, delay1, 0);
|
|
AudioConnection patchCord4(filter1, 0, mixer1, 0);
|
|
AudioConnection patchCord5(delay1, 0, mixer1, 1);
|
|
AudioConnection patchCord6(delay1, 0, mixer2, 1);
|
|
AudioConnection patchCord7(mixer1, delay1);
|
|
AudioConnection patchCord8(queue1, 0, mixer1, 3); // for disabling the filter
|
|
AudioConnection patchCord9(mixer1, 0, mixer2, 0);
|
|
#ifdef TEENSY_AUDIO_BOARD
|
|
AudioOutputI2S i2s1; //xy=1200,432
|
|
AudioControlSGTL5000 sgtl5000_1; //xy=197,554
|
|
AudioConnection patchCord10(mixer2, 0, i2s1, 0);
|
|
AudioConnection patchCord11(mixer2, 0, i2s1, 1);
|
|
#else
|
|
AudioOutputPT8211 pt8211_1; //xy=1079,320
|
|
AudioAmplifier volume_master; //xy=678,393
|
|
AudioAmplifier volume_r; //xy=818,370
|
|
AudioAmplifier volume_l; //xy=818,411
|
|
AudioConnection patchCord10(mixer2, 0, volume_master, 0);
|
|
AudioConnection patchCord11(volume_master, volume_r);
|
|
AudioConnection patchCord12(volume_master, volume_l);
|
|
AudioConnection patchCord13(volume_r, 0, pt8211_1, 0);
|
|
AudioConnection patchCord14(volume_l, 0, pt8211_1, 1);
|
|
#endif
|
|
// GUItool: end automatically generated code
|
|
|
|
Dexed* dexed = new Dexed(SAMPLE_RATE);
|
|
bool sd_card_available = false;
|
|
uint8_t midi_channel = DEFAULT_MIDI_CHANNEL;
|
|
uint32_t xrun = 0;
|
|
uint32_t overload = 0;
|
|
uint32_t peak = 0;
|
|
uint16_t render_time_max = 0;
|
|
uint8_t bank = 0;
|
|
uint8_t max_loaded_banks = 0;
|
|
uint8_t voice = 0;
|
|
float vol = VOLUME;
|
|
float vol_right = 1.0;
|
|
float vol_left = 1.0;
|
|
char bank_name[BANK_NAME_LEN];
|
|
char voice_name[VOICE_NAME_LEN];
|
|
char bank_names[MAX_BANKS][BANK_NAME_LEN];
|
|
char voice_names[MAX_VOICES][VOICE_NAME_LEN];
|
|
elapsedMillis autostore;
|
|
uint8_t eeprom_update_status = 0;
|
|
uint16_t autostore_value = AUTOSTORE_MS;
|
|
uint8_t midi_timing_counter = 0; // 24 per qarter
|
|
elapsedMillis midi_timing_timestep;
|
|
uint16_t midi_timing_quarter = 0;
|
|
elapsedMillis long_button_pressed;
|
|
uint8_t effect_filter_frq = ENC_FILTER_FRQ_STEPS;
|
|
uint8_t effect_filter_resonance = ENC_FILTER_RES_STEPS;
|
|
uint8_t effect_filter_octave = (1.0 * ENC_FILTER_RES_STEPS / 8.0) + 0.5;
|
|
uint8_t effect_delay_time = 0;
|
|
uint8_t effect_delay_feedback = 0;
|
|
uint8_t effect_delay_volume = 0;
|
|
bool effect_delay_sync = 0;
|
|
|
|
#ifdef MASTER_KEY_MIDI
|
|
bool master_key_enabled = false;
|
|
#endif
|
|
|
|
#ifdef SHOW_CPU_LOAD_MSEC
|
|
elapsedMillis cpu_mem_millis;
|
|
#endif
|
|
|
|
#ifdef MIDI_DEVICE
|
|
MIDI_CREATE_INSTANCE(HardwareSerial, MIDI_DEVICE, midi_serial);
|
|
#endif
|
|
#ifdef USE_ONBOARD_USB_HOST
|
|
USBHost usb_host;
|
|
MIDIDevice midi_usb(usb_host);
|
|
#endif
|
|
|
|
#ifdef TEST_NOTE
|
|
IntervalTimer sched_note_on;
|
|
IntervalTimer sched_note_off;
|
|
uint8_t _voice_counter = 0;
|
|
#endif
|
|
|
|
void setup()
|
|
{
|
|
//while (!Serial) ; // wait for Arduino Serial Monitor
|
|
Serial.begin(SERIAL_SPEED);
|
|
|
|
#ifdef I2C_DISPLAY
|
|
lcd.init();
|
|
lcd.blink_off();
|
|
lcd.cursor_off();
|
|
lcd.backlight();
|
|
lcd.noAutoscroll();
|
|
lcd.clear();
|
|
lcd.display();
|
|
lcd.show(0, 0, 16, " MicroDexed");
|
|
lcd.show(1, 0, 16, "(c)parasiTstudio");
|
|
|
|
pinMode(BUT_L_PIN, INPUT_PULLUP);
|
|
pinMode(BUT_R_PIN, INPUT_PULLUP);
|
|
#endif
|
|
|
|
delay(220);
|
|
Serial.println(F("MicroDexed based on https://github.com/asb2m10/dexed"));
|
|
Serial.println(F("(c)2018 H. Wirtz <wirtz@parasitstudio.de>"));
|
|
Serial.println(F("https://github.com/dcoredump/MicroDexed"));
|
|
Serial.println(F("<setup start>"));
|
|
initial_values_from_eeprom();
|
|
|
|
// start up USB host
|
|
#ifdef USE_ONBOARD_USB_HOST
|
|
usb_host.begin();
|
|
Serial.println(F("USB-MIDI enabled."));
|
|
#endif
|
|
|
|
#ifdef MIDI_DEVICE
|
|
// Start serial MIDI
|
|
midi_serial.begin(DEFAULT_MIDI_CHANNEL);
|
|
Serial.println(F("Serial MIDI enabled"));
|
|
#endif
|
|
|
|
// start audio card
|
|
AudioMemory(AUDIO_MEM);
|
|
#ifdef TEENSY_AUDIO_BOARD
|
|
sgtl5000_1.enable();
|
|
sgtl5000_1.dacVolumeRamp();
|
|
//sgtl5000_1.dacVolumeRampLinear();
|
|
sgtl5000_1.unmuteHeadphone();
|
|
sgtl5000_1.unmuteLineout();
|
|
sgtl5000_1.autoVolumeDisable(); // turn off AGC
|
|
sgtl5000_1.volume(1.0, 1.0);
|
|
sgtl5000_1.lineOutLevel(31);
|
|
Serial.println(F("Teensy-Audio-Board enabled."));
|
|
#else
|
|
Serial.println(F("PT8211 enabled."));
|
|
#endif
|
|
set_volume(vol, vol_left, vol_right);
|
|
|
|
// start SD card
|
|
SPI.setMOSI(SDCARD_MOSI_PIN);
|
|
SPI.setSCK(SDCARD_SCK_PIN);
|
|
if (!SD.begin(SDCARD_CS_PIN))
|
|
{
|
|
Serial.println(F("SD card not accessable."));
|
|
strcpy(bank_name, "Default");
|
|
strcpy(voice_name, "Default");
|
|
}
|
|
else
|
|
{
|
|
Serial.println(F("SD card found."));
|
|
sd_card_available = true;
|
|
|
|
// read all bank names
|
|
max_loaded_banks = get_bank_names();
|
|
strip_extension(bank_names[bank], bank_name);
|
|
|
|
// read all voice name for actual bank
|
|
get_voice_names_from_bank(bank);
|
|
#ifdef DEBUG
|
|
Serial.print(F("Bank ["));
|
|
Serial.print(bank_names[bank]);
|
|
Serial.print(F("/"));
|
|
Serial.print(bank_name);
|
|
Serial.println(F("]"));
|
|
for (uint8_t n = 0; n < MAX_VOICES; n++)
|
|
{
|
|
if (n < 10)
|
|
Serial.print(F(" "));
|
|
Serial.print(F(" "));
|
|
Serial.print(n, DEC);
|
|
Serial.print(F("["));
|
|
Serial.print(voice_names[n]);
|
|
Serial.println(F("]"));
|
|
}
|
|
#endif
|
|
|
|
// Init effects
|
|
filter1.frequency(EXP_FUNC((float)map(effect_filter_frq, 0, ENC_FILTER_FRQ_STEPS, 0, 1024) / 150.0) * 10.0 + 80.0);
|
|
//filter1.resonance(mapfloat(effect_filter_resonance, 0, ENC_FILTER_RES_STEPS, 0.7, 5.0));
|
|
filter1.resonance(EXP_FUNC(mapfloat(effect_filter_resonance, 0, ENC_FILTER_RES_STEPS, 0.7, 5.0)) * 0.044 + 0.61);
|
|
filter1.octaveControl(mapfloat(effect_filter_octave, 0, ENC_FILTER_OCT_STEPS, 0.0, 7.0));
|
|
delay1.delay(0, mapfloat(effect_delay_feedback, 0, ENC_DELAY_TIME_STEPS, 0.0, DELAY_MAX_TIME));
|
|
// mixer1 is the feedback-adding mixer, mixer2 the whole delay (with/without feedback) mixer
|
|
mixer1.gain(0, 1.0); // original signal
|
|
mixer1.gain(1, mapfloat(effect_delay_feedback, 0, 99, 0.0, 1.0)); // amount of feedback
|
|
mixer1.gain(0, 0.0); // filtered signal off
|
|
mixer1.gain(3, 1.0); // original signal on
|
|
mixer2.gain(0, 1.0); // original signal
|
|
mixer2.gain(1, mapfloat(effect_delay_volume, 0, 99, 0.0, 1.0)); // delayed signal (including feedback)
|
|
|
|
// load default SYSEX data
|
|
load_sysex(bank, voice);
|
|
}
|
|
|
|
#ifdef I2C_DISPLAY
|
|
enc[0].write(map(vol * 100, 0, 100, 0, ENC_VOL_STEPS));
|
|
enc_val[0] = enc[0].read();
|
|
enc[1].write(voice);
|
|
enc_val[1] = enc[1].read();
|
|
but[0].update();
|
|
but[1].update();
|
|
#endif
|
|
|
|
#if defined (DEBUG) && defined (SHOW_CPU_LOAD_MSEC)
|
|
// Initialize processor and memory measurements
|
|
AudioProcessorUsageMaxReset();
|
|
AudioMemoryUsageMaxReset();
|
|
#endif
|
|
|
|
#ifdef DEBUG
|
|
Serial.print(F("Bank/Voice from EEPROM ["));
|
|
Serial.print(EEPROM.read(EEPROM_OFFSET + EEPROM_BANK_ADDR), DEC);
|
|
Serial.print(F("/"));
|
|
Serial.print(EEPROM.read(EEPROM_OFFSET + EEPROM_VOICE_ADDR), DEC);
|
|
Serial.println(F("]"));
|
|
show_patch();
|
|
#endif
|
|
|
|
Serial.print(F("AUDIO_BLOCK_SAMPLES="));
|
|
Serial.print(AUDIO_BLOCK_SAMPLES);
|
|
Serial.print(F(" (Time per block="));
|
|
Serial.print(1000000 / (SAMPLE_RATE / AUDIO_BLOCK_SAMPLES));
|
|
Serial.println(F("ms)"));
|
|
|
|
#ifdef TEST_NOTE
|
|
Serial.println(F("MIDI test enabled"));
|
|
sched_note_on.begin(note_on, 2000000);
|
|
sched_note_off.begin(note_off, 6333333);
|
|
#endif
|
|
|
|
#if defined (DEBUG) && defined (SHOW_CPU_LOAD_MSEC)
|
|
show_cpu_and_mem_usage();
|
|
#endif
|
|
|
|
#ifdef I2C_DISPLAY
|
|
lcd.clear();
|
|
ui_show_main();
|
|
#endif
|
|
|
|
Serial.println(F("<setup end>"));
|
|
|
|
#ifdef TEST_NOTE
|
|
//dexed->data[DEXED_VOICE_OFFSET+DEXED_LFO_PITCH_MOD_DEP] = 99; // full pitch mod depth
|
|
//dexed->data[DEXED_VOICE_OFFSET+DEXED_LFO_PITCH_MOD_SENS] = 99; // full pitch mod sense
|
|
//dexed->data[DEXED_GLOBAL_PARAMETER_OFFSET+DEXED_MODWHEEL_ASSIGN] = 7; // mod wheel assign all
|
|
//dexed->data[DEXED_GLOBAL_PARAMETER_OFFSET+DEXED_FOOTCTRL_ASSIGN] = 7; // foot ctrl assign all
|
|
//dexed->data[DEXED_GLOBAL_PARAMETER_OFFSET+DEXED_BREATHCTRL_ASSIGN] = 7; // breath ctrl assign all
|
|
//dexed->data[DEXED_GLOBAL_PARAMETER_OFFSET+AT_ASSIGN] = 7; // at ctrl assign all
|
|
//queue_midi_event(0xb0, 1, 99); // test mod wheel
|
|
//queue_midi_event(0xb0, 2, 99); // test breath ctrl
|
|
//queue_midi_event(0xb0, 4, 99); // test food switch
|
|
//queue_midi_event(0xd0, 4, 99); // test at
|
|
//queue_midi_event(0xe0, 0xff, 0xff); // test pitch bend
|
|
#endif
|
|
}
|
|
|
|
void loop()
|
|
{
|
|
int16_t* audio_buffer; // pointer to AUDIO_BLOCK_SAMPLES * int16_t
|
|
const uint16_t audio_block_time_ms = 1000000 / (SAMPLE_RATE / AUDIO_BLOCK_SAMPLES);
|
|
|
|
// Main sound calculation
|
|
if (queue1.available())
|
|
{
|
|
audio_buffer = queue1.getBuffer();
|
|
|
|
elapsedMicros t1;
|
|
dexed->getSamples(AUDIO_BLOCK_SAMPLES, audio_buffer);
|
|
if (t1 > audio_block_time_ms) // everything greater 2.9ms is a buffer underrun!
|
|
xrun++;
|
|
if (t1 > render_time_max)
|
|
render_time_max = t1;
|
|
if (peak1.available())
|
|
{
|
|
if (peak1.read() > 0.99)
|
|
peak++;
|
|
}
|
|
#ifndef TEENSY_AUDIO_BOARD
|
|
for (uint8_t i = 0; i < AUDIO_BLOCK_SAMPLES; i++)
|
|
audio_buffer[i] *= vol;
|
|
#endif
|
|
queue1.playBuffer();
|
|
}
|
|
|
|
// EEPROM update handling
|
|
if (eeprom_update_status > 0 && autostore >= autostore_value)
|
|
{
|
|
autostore = 0;
|
|
eeprom_update();
|
|
}
|
|
|
|
// MIDI input handling
|
|
handle_input();
|
|
#ifdef I2C_DISPLAY
|
|
// UI
|
|
if (master_timer >= TIMER_UI_HANDLING_MS)
|
|
{
|
|
master_timer -= TIMER_UI_HANDLING_MS;
|
|
|
|
handle_ui();
|
|
}
|
|
#endif
|
|
|
|
#if defined (DEBUG) && defined (SHOW_CPU_LOAD_MSEC)
|
|
if (cpu_mem_millis >= SHOW_CPU_LOAD_MSEC)
|
|
{
|
|
cpu_mem_millis -= SHOW_CPU_LOAD_MSEC;
|
|
show_cpu_and_mem_usage();
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void handle_input(void)
|
|
{
|
|
#ifdef USE_ONBOARD_USB_HOST
|
|
usb_host.Task();
|
|
while (midi_usb.read())
|
|
{
|
|
#ifdef DEBUG
|
|
Serial.println(F("[MIDI-USB]"));
|
|
#endif
|
|
if (midi_usb.getType() >= 0xf0) // SysEX
|
|
{
|
|
handle_sysex_parameter(midi_usb.getSysExArray(), midi_usb.getSysExArrayLength());
|
|
}
|
|
else if (queue_midi_event(midi_usb.getType(), midi_usb.getData1(), midi_usb.getData2()))
|
|
return;
|
|
}
|
|
#endif
|
|
#ifdef MIDI_DEVICE
|
|
while (midi_serial.read())
|
|
{
|
|
#ifdef DEBUG
|
|
Serial.print(F("[MIDI-Serial] "));
|
|
#endif
|
|
if (midi_serial.getType() >= 0xf0) // SYSEX
|
|
{
|
|
handle_sysex_parameter(midi_serial.getSysExArray(), midi_serial.getSysExArrayLength());
|
|
}
|
|
else if (queue_midi_event(midi_serial.getType(), midi_serial.getData1(), midi_serial.getData2()))
|
|
return;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
#ifdef SHOW_MIDI_EVENT
|
|
void print_midi_event(uint8_t type, uint8_t data1, uint8_t data2)
|
|
{
|
|
Serial.print(F("Listen MIDI-Channel: "));
|
|
if (midi_channel == MIDI_CHANNEL_OMNI)
|
|
Serial.print(F("OMNI"));
|
|
else
|
|
Serial.print(midi_channel, DEC);
|
|
Serial.print(F(", MIDI event type: 0x"));
|
|
if (type < 16)
|
|
Serial.print(F("0"));
|
|
Serial.print(type, HEX);
|
|
Serial.print(F(", incoming MIDI channel: "));
|
|
Serial.print((type & 0x0f) + 1, DEC);
|
|
Serial.print(F(", data1: "));
|
|
Serial.print(data1, DEC);
|
|
Serial.print(F(", data2: "));
|
|
Serial.println(data2, DEC);
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef MASTER_KEY_MIDI
|
|
bool handle_master_key(uint8_t data)
|
|
{
|
|
int8_t num = num_key_base_c(data);
|
|
|
|
#ifdef DEBUG
|
|
Serial.print(F("Master-Key: "));
|
|
Serial.println(num, DEC);
|
|
#endif
|
|
|
|
if (num > 0)
|
|
{
|
|
// a white key!
|
|
if (num <= 32)
|
|
{
|
|
if (load_sysex(bank, num))
|
|
{
|
|
#ifdef DEBUG
|
|
Serial.print(F("Loading voice number "));
|
|
Serial.println(num, DEC);
|
|
#endif
|
|
eeprom_write(EEPROM_UPDATE_VOICE);
|
|
#ifdef I2C_DISPLAY
|
|
lcd.show(1, 0, 2, voice + 1);
|
|
lcd.show(1, 2, 1, " ");
|
|
lcd.show(1, 3, 10, voice_names[voice]);
|
|
#endif
|
|
}
|
|
#ifdef DEBUG
|
|
else
|
|
{
|
|
Serial.print(F("E: cannot load voice number "));
|
|
Serial.println(num, DEC);
|
|
}
|
|
#endif
|
|
}
|
|
return (true);
|
|
}
|
|
else
|
|
{
|
|
// a black key!
|
|
num = abs(num);
|
|
if (num <= 10)
|
|
{
|
|
set_volume(float(num * 0.1), vol_left, vol_right);
|
|
}
|
|
else if (num > 10 && num <= 20)
|
|
{
|
|
bank = num - 10;
|
|
#ifdef DEBUG
|
|
Serial.print(F("Bank switch to: "));
|
|
Serial.println(bank, DEC);
|
|
#endif
|
|
eeprom_write(EEPROM_UPDATE_BANK);
|
|
#ifdef I2C_DISPLAY
|
|
if (get_voice_names_from_bank(bank))
|
|
{
|
|
strip_extension(bank_names[bank], bank_name);
|
|
lcd.show(0, 0, 2, bank);
|
|
lcd.show(0, 2, 1, " ");
|
|
lcd.show(0, 3, 10, bank_name);
|
|
}
|
|
else
|
|
{
|
|
lcd.show(0, 0, 2, bank);
|
|
lcd.show(0, 2, 10, " *ERROR*");
|
|
}
|
|
#endif
|
|
return (true);
|
|
}
|
|
}
|
|
return (false);
|
|
}
|
|
#endif
|
|
|
|
bool queue_midi_event(uint8_t type, uint8_t data1, uint8_t data2)
|
|
{
|
|
bool ret = false;
|
|
|
|
#if defined(DEBUG) && defined(SHOW_MIDI_EVENT)
|
|
print_midi_event(type, data1, data2);
|
|
#endif
|
|
|
|
// check for MIDI channel
|
|
if (midi_channel != MIDI_CHANNEL_OMNI)
|
|
{
|
|
uint8_t c = type & 0x0f;
|
|
if (c != midi_channel - 1)
|
|
{
|
|
#ifdef DEBUG
|
|
Serial.print(F("Ignoring MIDI data on channel "));
|
|
Serial.print(c);
|
|
Serial.print(F("(listening on "));
|
|
Serial.print(midi_channel);
|
|
Serial.println(F(")"));
|
|
#endif
|
|
return (false);
|
|
}
|
|
}
|
|
|
|
// now throw away the MIDI channel information
|
|
type &= 0xf0;
|
|
|
|
#ifdef MASTER_KEY_MIDI
|
|
if (type == 0x80 && data1 == MASTER_KEY_MIDI) // Master key released
|
|
{
|
|
master_key_enabled = false;
|
|
#ifdef DEBUG
|
|
Serial.println(F("Master key disabled"));
|
|
#endif
|
|
}
|
|
else if (type == 0x90 && data1 == MASTER_KEY_MIDI) // Master key pressed
|
|
{
|
|
master_key_enabled = true;
|
|
#ifdef DEBUG
|
|
Serial.println(F("Master key enabled"));
|
|
#endif
|
|
}
|
|
else
|
|
{
|
|
if (master_key_enabled)
|
|
{
|
|
if (type == 0x80) // handle when note is released
|
|
{
|
|
dexed->notesOff();
|
|
handle_master_key(data1);
|
|
}
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
if (type == 0xb0)
|
|
{
|
|
switch (data1)
|
|
{
|
|
case 0x66: // CC 102: filter frequency
|
|
effect_filter_frq = map(data2, 0, 127, 0, ENC_FILTER_FRQ_STEPS);
|
|
if (effect_filter_frq == ENC_FILTER_FRQ_STEPS)
|
|
{
|
|
// turn "off" filter
|
|
mixer1.gain(0, 0.0); // filtered signal off
|
|
mixer1.gain(3, 1.0); // original signal on
|
|
}
|
|
else
|
|
{
|
|
// turn "on" filter
|
|
mixer1.gain(0, 1.0); // filtered signal on
|
|
mixer1.gain(3, 0.0); // original signal off
|
|
}
|
|
filter1.frequency(EXP_FUNC((float)map(effect_filter_frq, 0, ENC_FILTER_FRQ_STEPS, 0, 1024) / 150.0) * 10.0 + 80.0);
|
|
break;
|
|
case 0x67: // CC 103: filter resonance
|
|
effect_filter_resonance = map(data2, 0, 127, 0, ENC_FILTER_RES_STEPS);
|
|
filter1.resonance(EXP_FUNC(mapfloat(effect_filter_resonance, 0, ENC_FILTER_RES_STEPS, 0.7, 5.0)) * 0.044 + 0.61);
|
|
break;
|
|
case 0x68: // CC 104: filter octave
|
|
effect_filter_octave = map(data2, 0, 127, 0, ENC_FILTER_OCT_STEPS);
|
|
filter1.octaveControl(mapfloat(effect_filter_octave, 0, ENC_FILTER_OCT_STEPS, 0.0, 7.0));
|
|
break;
|
|
case 0x69: // CC 105: delay time
|
|
effect_delay_time = map(data2, 0, 127, 0, ENC_DELAY_TIME_STEPS);
|
|
delay1.delay(0, mapfloat(effect_delay_time, 0, ENC_DELAY_TIME_STEPS, 0.0, DELAY_MAX_TIME));
|
|
break;
|
|
case 0x6A: // CC 106: delay feedback
|
|
effect_delay_feedback = map(data2, 0, 127, 0, ENC_DELAY_FB_STEPS);
|
|
mixer1.gain(1, mapfloat(float(effect_delay_feedback), 0, ENC_DELAY_FB_STEPS, 0.0, 1.0));
|
|
break;
|
|
case 0x6B: // CC 107: delay volume
|
|
effect_delay_volume = map(data2, 0, 127, 0, ENC_DELAY_VOLUME_STEPS);
|
|
mixer2.gain(1, mapfloat(effect_delay_volume, 0, 99, 0.0, 1.0)); // delay tap1 signal (with added feedback)
|
|
break;
|
|
default:
|
|
ret = dexed->processMidiMessage(type, data1, data2);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef MASTER_KEY_MIDI
|
|
}
|
|
#endif
|
|
return (ret);
|
|
}
|
|
|
|
#ifdef MASTER_KEY_MIDI
|
|
int8_t num_key_base_c(uint8_t midi_note)
|
|
{
|
|
int8_t num = 0;
|
|
|
|
switch (midi_note % 12)
|
|
{
|
|
// positive numbers are white keys, negative black ones
|
|
case 0:
|
|
num = 1;
|
|
break;
|
|
case 1:
|
|
num = -1;
|
|
break;
|
|
case 2:
|
|
num = 2;
|
|
break;
|
|
case 3:
|
|
num = -2;
|
|
break;
|
|
case 4:
|
|
num = 3;
|
|
break;
|
|
case 5:
|
|
num = 4;
|
|
break;
|
|
case 6:
|
|
num = -3;
|
|
break;
|
|
case 7:
|
|
num = 5;
|
|
break;
|
|
case 8:
|
|
num = -4;
|
|
break;
|
|
case 9:
|
|
num = 6;
|
|
break;
|
|
case 10:
|
|
num = -5;
|
|
break;
|
|
case 11:
|
|
num = 7;
|
|
break;
|
|
}
|
|
|
|
if (num > 0)
|
|
return (num + (((midi_note - MASTER_NUM1) / 12) * 7));
|
|
else
|
|
return (num + ((((midi_note - MASTER_NUM1) / 12) * 5) * -1));
|
|
}
|
|
#endif
|
|
|
|
void set_volume(float v, float vr, float vl)
|
|
{
|
|
vol = v;
|
|
vol_right = vr;
|
|
vol_left = vl;
|
|
|
|
#ifdef DEBUG
|
|
uint8_t tmp;
|
|
Serial.print(F("Setting volume: VOL="));
|
|
Serial.print(v, DEC);
|
|
Serial.print(F("["));
|
|
tmp = EEPROM.read(EEPROM_OFFSET + EEPROM_MASTER_VOLUME_ADDR);
|
|
Serial.print(tmp, DEC);
|
|
Serial.print(F("/"));
|
|
Serial.print(float(tmp) / UCHAR_MAX, DEC);
|
|
Serial.print(F("] VOL_L="));
|
|
Serial.print(vl, DEC);
|
|
Serial.print(F("["));
|
|
tmp = EEPROM.read(EEPROM_OFFSET + EEPROM_VOLUME_LEFT_ADDR);
|
|
Serial.print(tmp, DEC);
|
|
Serial.print(F("/"));
|
|
Serial.print(float(tmp) / UCHAR_MAX, DEC);
|
|
Serial.print(F("] VOL_R="));
|
|
Serial.print(vr, DEC);
|
|
Serial.print(F("["));
|
|
tmp = EEPROM.read(EEPROM_OFFSET + EEPROM_VOLUME_RIGHT_ADDR);
|
|
Serial.print(tmp, DEC);
|
|
Serial.print(F("/"));
|
|
Serial.print(float(tmp) / UCHAR_MAX, DEC);
|
|
Serial.println(F("]"));
|
|
#endif
|
|
|
|
#ifdef TEENSY_AUDIO_BOARD
|
|
//sgtl5000_1.dacVolume(vol * vol_left, vol * vol_right);
|
|
sgtl5000_1.dacVolume(pow(vol * vol_left, 0.2), pow(vol * vol_right, 0.2));
|
|
#else
|
|
volume_master.gain(pow(vol, 0.2));
|
|
volume_r.gain(pow(vr, 0.2));
|
|
volume_l.gain(pow(vl, 0.2));
|
|
#endif
|
|
}
|
|
|
|
void handle_sysex_parameter(const uint8_t* sysex, uint8_t len)
|
|
{
|
|
if (sysex[0] != 240)
|
|
{
|
|
switch (sysex[0])
|
|
{
|
|
case 241: // MIDI Time Code Quarter Frame
|
|
break;
|
|
case 248: // Timing Clock (24 frames per quarter note)
|
|
midi_timing_counter++;
|
|
if (midi_timing_counter % 24 == 0)
|
|
{
|
|
midi_timing_quarter = midi_timing_timestep;
|
|
midi_timing_counter = 0;
|
|
midi_timing_timestep = 0;
|
|
// Adjust delay control here
|
|
#ifdef DEBUG
|
|
Serial.print(F("MIDI Timing: "));
|
|
Serial.print(60000 / midi_timing_quarter, DEC);
|
|
Serial.print(F("bpm ("));
|
|
Serial.print(midi_timing_quarter, DEC);
|
|
Serial.println(F("ms per quarter)"));
|
|
#endif
|
|
}
|
|
break;
|
|
case 255: // Reset To Power Up
|
|
#ifdef DEBUG
|
|
Serial.println(F("MIDI SYSEX RESET"));
|
|
#endif
|
|
dexed->notesOff();
|
|
dexed->panic();
|
|
dexed->resetControllers();
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (sysex[1] != 0x43) // check for Yamaha sysex
|
|
{
|
|
#ifdef DEBUG
|
|
Serial.println(F("E: SysEx vendor not Yamaha."));
|
|
#endif
|
|
return;
|
|
}
|
|
|
|
// parse parameter change
|
|
if (len == 7)
|
|
{
|
|
|
|
if ((sysex[3] & 0x7c) != 0 || (sysex[3] & 0x7c) != 2)
|
|
{
|
|
#ifdef DEBUG
|
|
Serial.println(F("E: Not a SysEx parameter or function parameter change."));
|
|
#endif
|
|
return;
|
|
}
|
|
if (sysex[6] != 0xf7)
|
|
{
|
|
#ifdef DEBUG
|
|
Serial.println(F("E: SysEx end status byte not detected."));
|
|
#endif
|
|
return;
|
|
}
|
|
if ((sysex[3] & 0x7c) == 0)
|
|
{
|
|
dexed->data[sysex[4]] = sysex[5]; // set parameter
|
|
dexed->doRefreshVoice();
|
|
}
|
|
else
|
|
{
|
|
dexed->data[DEXED_GLOBAL_PARAMETER_OFFSET - 63 + sysex[4]] = sysex[5]; // set function parameter
|
|
dexed->controllers.values_[kControllerPitchRange] = dexed->data[DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_PITCHBEND_RANGE];
|
|
dexed->controllers.values_[kControllerPitchStep] = dexed->data[DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_PITCHBEND_STEP];
|
|
dexed->controllers.wheel.setRange(dexed->data[DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_MODWHEEL_RANGE]);
|
|
dexed->controllers.wheel.setTarget(dexed->data[DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_MODWHEEL_ASSIGN]);
|
|
dexed->controllers.foot.setRange(dexed->data[DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_FOOTCTRL_RANGE]);
|
|
dexed->controllers.foot.setTarget(dexed->data[DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_FOOTCTRL_ASSIGN]);
|
|
dexed->controllers.breath.setRange(dexed->data[DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_BREATHCTRL_RANGE]);
|
|
dexed->controllers.breath.setTarget(dexed->data[DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_BREATHCTRL_ASSIGN]);
|
|
dexed->controllers.at.setRange(dexed->data[DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_AT_RANGE]);
|
|
dexed->controllers.at.setTarget(dexed->data[DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_AT_ASSIGN]);
|
|
dexed->controllers.masterTune = (dexed->data[DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_MASTER_TUNE] * 0x4000 << 11) * (1.0 / 12);
|
|
dexed->controllers.refresh();
|
|
}
|
|
#ifdef DEBUG
|
|
Serial.print(F("SysEx"));
|
|
if ((sysex[3] & 0x7c) == 0)
|
|
Serial.print(F(" function"));
|
|
Serial.print(F(" parameter "));
|
|
Serial.print(sysex[4], DEC);
|
|
Serial.print(F(" = "));
|
|
Serial.println(sysex[5], DEC);
|
|
#endif
|
|
}
|
|
#ifdef DEBUG
|
|
else
|
|
Serial.println(F("E: SysEx parameter length wrong."));
|
|
#endif
|
|
}
|
|
}
|
|
|
|
void initial_values_from_eeprom(void)
|
|
{
|
|
uint32_t crc_eeprom = read_eeprom_checksum();
|
|
uint32_t crc = eeprom_crc32(EEPROM_OFFSET, EEPROM_DATA_LENGTH);
|
|
|
|
#ifdef DEBUG
|
|
Serial.print(F("EEPROM checksum: 0x"));
|
|
Serial.print(crc_eeprom, HEX);
|
|
Serial.print(F(" / 0x"));
|
|
Serial.print(crc, HEX);
|
|
#endif
|
|
if (crc_eeprom != crc)
|
|
{
|
|
#ifdef DEBUG
|
|
Serial.print(F(" - mismatch -> initializing EEPROM!"));
|
|
#endif
|
|
eeprom_write(EEPROM_UPDATE_BANK & EEPROM_UPDATE_VOICE & EEPROM_UPDATE_VOL & EEPROM_UPDATE_VOL_R & EEPROM_UPDATE_VOL_L & EEPROM_UPDATE_MIDICHANNEL);
|
|
}
|
|
else
|
|
{
|
|
bank = EEPROM.read(EEPROM_OFFSET + EEPROM_BANK_ADDR);
|
|
voice = EEPROM.read(EEPROM_OFFSET + EEPROM_VOICE_ADDR);
|
|
vol = float(EEPROM.read(EEPROM_OFFSET + EEPROM_MASTER_VOLUME_ADDR)) / UCHAR_MAX;
|
|
vol_right = float(EEPROM.read(EEPROM_OFFSET + EEPROM_VOLUME_RIGHT_ADDR)) / UCHAR_MAX;
|
|
vol_left = float(EEPROM.read(EEPROM_OFFSET + EEPROM_VOLUME_LEFT_ADDR)) / UCHAR_MAX;
|
|
midi_channel = EEPROM.read(EEPROM_OFFSET + EEPROM_MIDICHANNEL_ADDR);
|
|
}
|
|
#ifdef DEBUG
|
|
Serial.println();
|
|
#endif
|
|
}
|
|
|
|
uint32_t read_eeprom_checksum(void)
|
|
{
|
|
return (EEPROM.read(EEPROM_CRC32_ADDR) << 24 | EEPROM.read(EEPROM_CRC32_ADDR + 1) << 16 | EEPROM.read(EEPROM_CRC32_ADDR + 2) << 8 | EEPROM.read(EEPROM_CRC32_ADDR + 3));
|
|
}
|
|
|
|
void update_eeprom_checksum(void)
|
|
{
|
|
write_eeprom_checksum(eeprom_crc32(EEPROM_OFFSET, EEPROM_DATA_LENGTH)); // recalculate crc and write to eeprom
|
|
}
|
|
|
|
void write_eeprom_checksum(uint32_t crc)
|
|
{
|
|
EEPROM.update(EEPROM_CRC32_ADDR, (crc & 0xff000000) >> 24);
|
|
EEPROM.update(EEPROM_CRC32_ADDR + 1, (crc & 0x00ff0000) >> 16);
|
|
EEPROM.update(EEPROM_CRC32_ADDR + 2, (crc & 0x0000ff00) >> 8);
|
|
EEPROM.update(EEPROM_CRC32_ADDR + 3, crc & 0x000000ff);
|
|
}
|
|
|
|
uint32_t eeprom_crc32(uint16_t calc_start, uint16_t calc_bytes) // base code from https://www.arduino.cc/en/Tutorial/EEPROMCrc
|
|
{
|
|
const uint32_t crc_table[16] =
|
|
{
|
|
0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac,
|
|
0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c,
|
|
0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c,
|
|
0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c
|
|
};
|
|
uint32_t crc = ~0L;
|
|
|
|
if (calc_start + calc_bytes > EEPROM.length())
|
|
calc_bytes = EEPROM.length() - calc_start;
|
|
|
|
for (uint16_t index = calc_start ; index < (calc_start + calc_bytes) ; ++index)
|
|
{
|
|
crc = crc_table[(crc ^ EEPROM[index]) & 0x0f] ^ (crc >> 4);
|
|
crc = crc_table[(crc ^ (EEPROM[index] >> 4)) & 0x0f] ^ (crc >> 4);
|
|
crc = ~crc;
|
|
}
|
|
|
|
return (crc);
|
|
}
|
|
|
|
void eeprom_write(uint8_t status)
|
|
{
|
|
eeprom_update_status |= status;
|
|
if (eeprom_update_status != 0)
|
|
autostore = 0;
|
|
#ifdef DEBUG
|
|
Serial.print(F("Updating EEPROM to state to: "));
|
|
Serial.println(eeprom_update_status);
|
|
#endif
|
|
}
|
|
|
|
void eeprom_update(void)
|
|
{
|
|
autostore_value = AUTOSTORE_FAST_MS;
|
|
|
|
if (eeprom_update_status & EEPROM_UPDATE_BANK)
|
|
{
|
|
EEPROM.update(EEPROM_OFFSET + EEPROM_BANK_ADDR, bank);
|
|
#ifdef DEBUG
|
|
Serial.println(F("Bank written to EEPROM"));
|
|
#endif
|
|
eeprom_update_status &= ~EEPROM_UPDATE_BANK;
|
|
}
|
|
else if (eeprom_update_status & EEPROM_UPDATE_VOICE)
|
|
{
|
|
EEPROM.update(EEPROM_OFFSET + EEPROM_VOICE_ADDR, voice);
|
|
#ifdef DEBUG
|
|
Serial.println(F("Voice written to EEPROM"));
|
|
#endif
|
|
eeprom_update_status &= ~EEPROM_UPDATE_VOICE;
|
|
}
|
|
else if (eeprom_update_status & EEPROM_UPDATE_VOL)
|
|
{
|
|
EEPROM.update(EEPROM_OFFSET + EEPROM_MASTER_VOLUME_ADDR, uint8_t(vol * UCHAR_MAX));
|
|
#ifdef DEBUG
|
|
Serial.println(F("Volume written to EEPROM"));
|
|
#endif
|
|
eeprom_update_status &= ~EEPROM_UPDATE_VOL;
|
|
}
|
|
else if (eeprom_update_status & EEPROM_UPDATE_VOL_R)
|
|
{
|
|
EEPROM.update(EEPROM_OFFSET + EEPROM_VOLUME_RIGHT_ADDR, uint8_t(vol_right * UCHAR_MAX));
|
|
#ifdef DEBUG
|
|
Serial.println(F("Volume right written to EEPROM"));
|
|
#endif
|
|
eeprom_update_status &= ~EEPROM_UPDATE_VOL_R;
|
|
}
|
|
else if (eeprom_update_status & EEPROM_UPDATE_VOL_L)
|
|
{
|
|
EEPROM.update(EEPROM_OFFSET + EEPROM_VOLUME_LEFT_ADDR, uint8_t(vol_left * UCHAR_MAX));
|
|
#ifdef DEBUG
|
|
Serial.println(F("Volume left written to EEPROM"));
|
|
#endif
|
|
eeprom_update_status &= ~EEPROM_UPDATE_VOL_L;
|
|
}
|
|
else if (eeprom_update_status & EEPROM_UPDATE_MIDICHANNEL )
|
|
{
|
|
EEPROM.update(EEPROM_OFFSET + EEPROM_MIDICHANNEL_ADDR, midi_channel);
|
|
update_eeprom_checksum();
|
|
#ifdef DEBUG
|
|
Serial.println(F("MIDI channel written to EEPROM"));
|
|
#endif
|
|
eeprom_update_status &= ~EEPROM_UPDATE_MIDICHANNEL;
|
|
}
|
|
else if (eeprom_update_status & EEPROM_UPDATE_CHECKSUM)
|
|
{
|
|
update_eeprom_checksum();
|
|
#ifdef DEBUG
|
|
Serial.println(F("Checksum written to EEPROM"));
|
|
#endif
|
|
eeprom_update_status &= ~EEPROM_UPDATE_CHECKSUM;
|
|
autostore_value = AUTOSTORE_MS;
|
|
return;
|
|
}
|
|
|
|
if (eeprom_update_status == 0)
|
|
eeprom_update_status |= EEPROM_UPDATE_CHECKSUM;
|
|
}
|
|
|
|
#if defined (DEBUG) && defined (SHOW_CPU_LOAD_MSEC)
|
|
void show_cpu_and_mem_usage(void)
|
|
{
|
|
Serial.print(F("CPU: "));
|
|
Serial.print(AudioProcessorUsage(), 2);
|
|
Serial.print(F("% CPU MAX: "));
|
|
Serial.print(AudioProcessorUsageMax(), 2);
|
|
Serial.print(F("% MEM: "));
|
|
Serial.print(AudioMemoryUsage(), DEC);
|
|
Serial.print(F(" MEM MAX: "));
|
|
Serial.print(AudioMemoryUsageMax(), DEC);
|
|
Serial.print(F(" RENDER_TIME_MAX: "));
|
|
Serial.print(render_time_max, DEC);
|
|
Serial.print(F(" XRUN: "));
|
|
Serial.print(xrun, DEC);
|
|
Serial.print(F(" OVERLOAD: "));
|
|
Serial.print(overload, DEC);
|
|
Serial.print(F(" PEAK: "));
|
|
Serial.print(peak, DEC);
|
|
Serial.print(F(" BLOCKSIZE: "));
|
|
Serial.print(AUDIO_BLOCK_SAMPLES, DEC);
|
|
Serial.println();
|
|
AudioProcessorUsageMaxReset();
|
|
AudioMemoryUsageMaxReset();
|
|
render_time_max = 0;
|
|
}
|
|
#endif
|
|
|
|
#ifdef DEBUG
|
|
void show_patch(void)
|
|
{
|
|
uint8_t i;
|
|
char voicename[VOICE_NAME_LEN];
|
|
|
|
memset(voicename, 0, sizeof(voicename));
|
|
for (i = 0; i < 6; i++)
|
|
{
|
|
Serial.print(F("OP"));
|
|
Serial.print(6 - i, DEC);
|
|
Serial.println(F(": "));
|
|
Serial.println(F("R1 | R2 | R3 | R4 | L1 | L2 | L3 | L4 LEV_SCL_BRK_PT | SCL_LEFT_DEPTH | SCL_RGHT_DEPTH"));
|
|
Serial.print(dexed->data[(i * 21) + DEXED_OP_EG_R1], DEC);
|
|
Serial.print(F(" "));
|
|
Serial.print(dexed->data[(i * 21) + DEXED_OP_EG_R2], DEC);
|
|
Serial.print(F(" "));
|
|
Serial.print(dexed->data[(i * 21) + DEXED_OP_EG_R3], DEC);
|
|
Serial.print(F(" "));
|
|
Serial.print(dexed->data[(i * 21) + DEXED_OP_EG_R4], DEC);
|
|
Serial.print(F(" "));
|
|
Serial.print(dexed->data[(i * 21) + DEXED_OP_EG_L1], DEC);
|
|
Serial.print(F(" "));
|
|
Serial.print(dexed->data[(i * 21) + DEXED_OP_EG_L2], DEC);
|
|
Serial.print(F(" "));
|
|
Serial.print(dexed->data[(i * 21) + DEXED_OP_EG_L3], DEC);
|
|
Serial.print(F(" "));
|
|
Serial.print(dexed->data[(i * 21) + DEXED_OP_EG_L4], DEC);
|
|
Serial.print(F(" "));
|
|
Serial.print(dexed->data[(i * 21) + DEXED_OP_LEV_SCL_BRK_PT], DEC);
|
|
Serial.print(F(" "));
|
|
Serial.print(dexed->data[(i * 21) + DEXED_OP_SCL_LEFT_DEPTH], DEC);
|
|
Serial.print(F(" "));
|
|
Serial.println(dexed->data[(i * 21) + DEXED_OP_SCL_RGHT_DEPTH], DEC);
|
|
Serial.println(F("SCL_L_CURVE | SCL_R_CURVE | RT_SCALE | AMS | KVS | OUT_LEV | OP_MOD | FRQ_C | FRQ_F | DETUNE"));
|
|
Serial.print(F(" "));
|
|
Serial.print(dexed->data[(i * 21) + DEXED_OP_SCL_LEFT_CURVE], DEC);
|
|
Serial.print(F(" "));
|
|
Serial.print(dexed->data[(i * 21) + DEXED_OP_SCL_RGHT_CURVE], DEC);
|
|
Serial.print(F(" "));
|
|
Serial.print(dexed->data[(i * 21) + DEXED_OP_OSC_RATE_SCALE], DEC);
|
|
Serial.print(F(" "));
|
|
Serial.print(dexed->data[(i * 21) + DEXED_OP_AMP_MOD_SENS], DEC);
|
|
Serial.print(F(" "));
|
|
Serial.print(dexed->data[(i * 21) + DEXED_OP_KEY_VEL_SENS], DEC);
|
|
Serial.print(F(" "));
|
|
Serial.print(dexed->data[(i * 21) + DEXED_OP_OUTPUT_LEV], DEC);
|
|
Serial.print(F(" "));
|
|
Serial.print(dexed->data[(i * 21) + DEXED_OP_OSC_MODE], DEC);
|
|
Serial.print(F(" "));
|
|
Serial.print(dexed->data[(i * 21) + DEXED_OP_FREQ_COARSE], DEC);
|
|
Serial.print(F(" "));
|
|
Serial.print(dexed->data[(i * 21) + DEXED_OP_FREQ_FINE], DEC);
|
|
Serial.print(F(" "));
|
|
Serial.println(dexed->data[(i * 21) + DEXED_OP_OSC_DETUNE], DEC);
|
|
}
|
|
Serial.println(F("PR1 | PR2 | PR3 | PR4 | PL1 | PL2 | PL3 | PL4"));
|
|
Serial.print(F(" "));
|
|
for (i = 0; i < 8; i++)
|
|
{
|
|
Serial.print(dexed->data[DEXED_VOICE_OFFSET + i], DEC);
|
|
Serial.print(F(" "));
|
|
}
|
|
Serial.println();
|
|
Serial.print(F("ALG: "));
|
|
Serial.println(dexed->data[DEXED_VOICE_OFFSET + DEXED_ALGORITHM], DEC);
|
|
Serial.print(F("FB: "));
|
|
Serial.println(dexed->data[DEXED_VOICE_OFFSET + DEXED_FEEDBACK], DEC);
|
|
Serial.print(F("OKS: "));
|
|
Serial.println(dexed->data[DEXED_VOICE_OFFSET + DEXED_OSC_KEY_SYNC], DEC);
|
|
Serial.print(F("LFO SPD: "));
|
|
Serial.println(dexed->data[DEXED_VOICE_OFFSET + DEXED_LFO_SPEED], DEC);
|
|
Serial.print(F("LFO_DLY: "));
|
|
Serial.println(dexed->data[DEXED_VOICE_OFFSET + DEXED_LFO_DELAY], DEC);
|
|
Serial.print(F("LFO PMD: "));
|
|
Serial.println(dexed->data[DEXED_VOICE_OFFSET + DEXED_LFO_PITCH_MOD_DEP], DEC);
|
|
Serial.print(F("LFO_AMD: "));
|
|
Serial.println(dexed->data[DEXED_VOICE_OFFSET + DEXED_LFO_AMP_MOD_DEP], DEC);
|
|
Serial.print(F("LFO_SYNC: "));
|
|
Serial.println(dexed->data[DEXED_VOICE_OFFSET + DEXED_LFO_SYNC], DEC);
|
|
Serial.print(F("LFO_WAVEFRM: "));
|
|
Serial.println(dexed->data[DEXED_VOICE_OFFSET + DEXED_LFO_WAVE], DEC);
|
|
Serial.print(F("LFO_PMS: "));
|
|
Serial.println(dexed->data[DEXED_VOICE_OFFSET + DEXED_LFO_PITCH_MOD_SENS], DEC);
|
|
Serial.print(F("TRNSPSE: "));
|
|
Serial.println(dexed->data[DEXED_VOICE_OFFSET + DEXED_TRANSPOSE], DEC);
|
|
Serial.print(F("NAME: "));
|
|
strncpy(voicename, (char *)&dexed->data[DEXED_VOICE_OFFSET + DEXED_NAME], sizeof(voicename) - 1);
|
|
Serial.print(F("["));
|
|
Serial.print(voicename);
|
|
Serial.println(F("]"));
|
|
for (i = DEXED_GLOBAL_PARAMETER_OFFSET; i <= DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_MAX_NOTES; i++)
|
|
{
|
|
Serial.print(i, DEC);
|
|
Serial.print(F(": "));
|
|
Serial.println(dexed->data[i]);
|
|
}
|
|
|
|
Serial.println();
|
|
}
|
|
#endif
|
|
|
|
#ifdef TEST_NOTE
|
|
void note_on(void)
|
|
{
|
|
randomSeed(analogRead(A0));
|
|
queue_midi_event(0x90, TEST_NOTE, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 1
|
|
queue_midi_event(0x90, TEST_NOTE + 5, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 2
|
|
queue_midi_event(0x90, TEST_NOTE + 8, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 3
|
|
queue_midi_event(0x90, TEST_NOTE + 12, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 4
|
|
queue_midi_event(0x90, TEST_NOTE + 17, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 5
|
|
queue_midi_event(0x90, TEST_NOTE + 20, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 6
|
|
queue_midi_event(0x90, TEST_NOTE + 24, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 7
|
|
queue_midi_event(0x90, TEST_NOTE + 29, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 8
|
|
queue_midi_event(0x90, TEST_NOTE + 32, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 9
|
|
queue_midi_event(0x90, TEST_NOTE + 37, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 10
|
|
queue_midi_event(0x90, TEST_NOTE + 40, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 11
|
|
queue_midi_event(0x90, TEST_NOTE + 46, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 12
|
|
queue_midi_event(0x90, TEST_NOTE + 49, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 13
|
|
queue_midi_event(0x90, TEST_NOTE + 52, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 14
|
|
queue_midi_event(0x90, TEST_NOTE + 57, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 15
|
|
queue_midi_event(0x90, TEST_NOTE + 60, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 16
|
|
}
|
|
|
|
void note_off(void)
|
|
{
|
|
queue_midi_event(0x80, TEST_NOTE, 0); // 1
|
|
queue_midi_event(0x80, TEST_NOTE + 5, 0); // 2
|
|
queue_midi_event(0x80, TEST_NOTE + 8, 0); // 3
|
|
queue_midi_event(0x80, TEST_NOTE + 12, 0); // 4
|
|
queue_midi_event(0x80, TEST_NOTE + 17, 0); // 5
|
|
queue_midi_event(0x80, TEST_NOTE + 20, 0); // 6
|
|
queue_midi_event(0x80, TEST_NOTE + 24, 0); // 7
|
|
queue_midi_event(0x80, TEST_NOTE + 29, 0); // 8
|
|
queue_midi_event(0x80, TEST_NOTE + 32, 0); // 9
|
|
queue_midi_event(0x80, TEST_NOTE + 37, 0); // 10
|
|
queue_midi_event(0x80, TEST_NOTE + 40, 0); // 11
|
|
queue_midi_event(0x80, TEST_NOTE + 46, 0); // 12
|
|
queue_midi_event(0x80, TEST_NOTE + 49, 0); // 13
|
|
queue_midi_event(0x80, TEST_NOTE + 52, 0); // 14
|
|
queue_midi_event(0x80, TEST_NOTE + 57, 0); // 15
|
|
queue_midi_event(0x80, TEST_NOTE + 60, 0); // 16
|
|
|
|
bool success = load_sysex(DEFAULT_SYSEXBANK, (++_voice_counter) - 1);
|
|
if (success == false)
|
|
#ifdef DEBUG
|
|
Serial.println(F("E: Cannot load SYSEX data"));
|
|
#endif
|
|
else
|
|
show_patch();
|
|
}
|
|
#endif
|
|
|