You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
MicroDexed/UI.cpp

583 lines
18 KiB

/*
MicroDexed
MicroDexed is a port of the Dexed sound engine
(https://github.com/asb2m10/dexed) for the Teensy-3.5/3.6 with audio shield.
Dexed ist heavily based on https://github.com/google/music-synthesizer-for-android
(c)2018 H. Wirtz <wirtz@parasitstudio.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <Arduino.h>
#include <limits.h>
#include "config.h"
#include "dexed.h"
#include "dexed_sysex.h"
#include "UI.h"
#ifdef I2C_DISPLAY // selecting sounds by encoder, button and display
elapsedMillis ui_back_to_main;
void handle_ui(void)
{
if (ui_back_to_main >= UI_AUTO_BACK_MS && (ui_state != UI_MAIN && ui_state != UI_EFFECTS_FILTER && ui_state != UI_EFFECTS_DELAY))
{
enc[0].write(map(vol * 100, 0, 100, 0, ENC_VOL_STEPS));
enc_val[0] = enc[0].read();
ui_show_main();
}
if (autostore >= AUTOSTORE_MS && (ui_main_state == UI_MAIN_VOICE_SELECTED || ui_main_state == UI_MAIN_BANK_SELECTED))
{
ui_show_main();
switch (ui_main_state)
{
case UI_MAIN_VOICE_SELECTED:
ui_main_state = UI_MAIN_VOICE;
break;
case UI_MAIN_BANK_SELECTED:
ui_main_state = UI_MAIN_BANK;
break;
}
}
for (uint8_t i = 0; i < NUM_ENCODER; i++)
{
but[i].update();
if (but[i].fallingEdge())
long_button_pressed = 0;
if (but[i].risingEdge())
{
uint32_t button_released = long_button_pressed;
if (button_released > LONG_BUTTON_PRESS)
{
// long pressing of button detected
#ifdef DEBUG
Serial.print(F("Long button pressing detected for button "));
Serial.println(i, DEC);
switch (i)
{
case 0: // long press for left button
break;
case 1: // long press for right button
switch (ui_state)
{
case UI_MAIN:
ui_main_state = UI_MAIN_FILTER_FRQ;
enc[i].write(effect_filter_frq);
enc_val[i] = enc[i].read();
ui_show_effects_filter();
break;
case UI_EFFECTS_FILTER:
ui_main_state = UI_MAIN_DELAY_TIME;
enc[i].write(effect_delay_time);
enc_val[i] = enc[i].read();
ui_show_effects_delay();
break;
case UI_EFFECTS_DELAY:
ui_main_state = UI_MAIN_VOICE;
enc[i].write(voice);
enc_val[i] = enc[i].read();
ui_show_main();
break;
}
break;
}
#endif
}
else
{
// Button pressed
switch (i)
{
case 0: // left button pressed
switch (ui_state)
{
case UI_MAIN:
enc[i].write(map(vol * 100, 0, 100, 0, ENC_VOL_STEPS));
enc_val[i] = enc[i].read();
ui_show_volume();
break;
case UI_VOLUME:
enc[i].write(midi_channel);
enc_val[i] = enc[i].read();
ui_show_midichannel();
break;
case UI_MIDICHANNEL:
enc[i].write(map(vol * 100, 0, 100, 0, ENC_VOL_STEPS));
enc_val[i] = enc[i].read();
ui_show_main();
break;
}
break;
case 1: // right button pressed
switch (ui_state)
{
case UI_MAIN:
switch (ui_main_state)
{
case UI_MAIN_BANK:
case UI_MAIN_BANK_SELECTED:
ui_main_state = UI_MAIN_VOICE;
enc[i].write(voice);
enc_val[i] = enc[i].read();
break;
case UI_MAIN_VOICE:
case UI_MAIN_VOICE_SELECTED:
ui_main_state = UI_MAIN_BANK;
enc[i].write(bank);
enc_val[i] = enc[i].read();
break;
}
ui_show_main();
break;
case UI_EFFECTS_FILTER:
case UI_EFFECTS_DELAY:
switch (ui_main_state)
{
case UI_MAIN_FILTER_FRQ:
ui_main_state = UI_MAIN_FILTER_RES;
enc[i].write(effect_filter_resonance);
enc_val[i] = enc[i].read();
ui_show_effects_filter();
break;
case UI_MAIN_FILTER_RES:
ui_main_state = UI_MAIN_FILTER_OCT;
enc[i].write(effect_filter_octave);
enc_val[i] = enc[i].read();
ui_show_effects_filter();
break;
case UI_MAIN_FILTER_OCT:
ui_main_state = UI_MAIN_FILTER_FRQ;
enc[i].write(effect_filter_frq);
enc_val[i] = enc[i].read();
ui_show_effects_filter();
break;
case UI_MAIN_DELAY_TIME:
ui_main_state = UI_MAIN_DELAY_FEEDBACK;
enc[i].write(effect_delay_feedback);
enc_val[i] = enc[i].read();
ui_show_effects_delay();
break;
case UI_MAIN_DELAY_VOLUME:
ui_main_state = UI_MAIN_DELAY_TIME;
enc[i].write(effect_delay_time);
enc_val[i] = enc[i].read();
ui_show_effects_delay();
break;
case UI_MAIN_DELAY_FEEDBACK:
ui_main_state = UI_MAIN_DELAY_VOLUME;
enc[i].write(effect_delay_volume);
enc_val[i] = enc[i].read();
ui_show_effects_delay();
break;
}
break;
}
}
}
#ifdef DEBUG
Serial.print(F("Button "));
Serial.println(i, DEC);
#endif
}
if (enc[i].read() == enc_val[i])
continue;
else
{
switch (i)
{
case 0: // left encoder moved
switch (ui_state)
{
case UI_MAIN:
case UI_VOLUME:
if (enc[i].read() <= 0)
enc[i].write(0);
else if (enc[i].read() >= ENC_VOL_STEPS)
enc[i].write(ENC_VOL_STEPS);
set_volume(float(map(enc[i].read(), 0, ENC_VOL_STEPS, 0, 100)) / 100, vol_left, vol_right);
eeprom_write(EEPROM_UPDATE_VOL);
ui_show_volume();
break;
case UI_MIDICHANNEL:
if (enc[i].read() <= 0)
enc[i].write(0);
else if (enc[i].read() >= 16)
enc[i].write(16);
midi_channel = enc[i].read();
eeprom_write(EEPROM_UPDATE_MIDICHANNEL);
ui_show_midichannel();
break;
}
break;
case 1: // right encoder moved
switch (ui_state)
{
case UI_MAIN:
switch (ui_main_state)
{
case UI_MAIN_BANK:
ui_main_state = UI_MAIN_BANK_SELECTED;
case UI_MAIN_BANK_SELECTED:
if (enc[i].read() <= 0)
enc[i].write(0);
else if (enc[i].read() > max_loaded_banks - 1)
enc[i].write(max_loaded_banks - 1);
bank = enc[i].read();
get_voice_names_from_bank(bank);
load_sysex(bank, voice);
eeprom_write(EEPROM_UPDATE_BANK);
break;
case UI_MAIN_VOICE:
ui_main_state = UI_MAIN_VOICE_SELECTED;
case UI_MAIN_VOICE_SELECTED:
if (enc[i].read() <= 0)
{
if (bank > 0)
{
enc[i].write(MAX_VOICES - 1);
bank--;
get_voice_names_from_bank(bank);
}
else
enc[i].write(0);
}
else if (enc[i].read() > MAX_VOICES - 1)
{
if (bank < MAX_BANKS - 1)
{
enc[i].write(0);
bank++;
get_voice_names_from_bank(bank);
}
else
enc[i].write(MAX_VOICES - 1);
}
voice = enc[i].read();
load_sysex(bank, voice);
eeprom_write(EEPROM_UPDATE_VOICE);
break;
}
ui_show_main();
break;
case UI_EFFECTS_FILTER:
switch (ui_main_state)
{
case UI_MAIN_FILTER_FRQ:
if (enc[i].read() <= 0)
enc[i].write(0);
else if (enc[i].read() > ENC_FILTER_FRQ_STEPS)
enc[i].write(ENC_FILTER_FRQ_STEPS);
effect_filter_frq = enc[i].read();
filter1.frequency(EXP_FUNC((float)map(effect_filter_frq, 0, ENC_FILTER_FRQ_STEPS, 0, 1024) / 150.0) * 10.0 + 80.0);
#ifdef DEBUG
Serial.print(F("Setting filter frequency to: "));
Serial.println(EXP_FUNC((float)map(effect_filter_frq, 0, ENC_FILTER_FRQ_STEPS, 0, 1024) / 150.0) * 10.0 + 80.0, DEC);
#endif
break;
case UI_MAIN_FILTER_RES:
if (enc[i].read() <= 0)
enc[i].write(0);
else if (enc[i].read() > ENC_FILTER_RES_STEPS)
enc[i].write(ENC_FILTER_RES_STEPS);
effect_filter_resonance = enc[i].read();
filter1.resonance(mapfloat(effect_filter_resonance, 0, ENC_FILTER_RES_STEPS, 0.7, 5.0));
#ifdef DEBUG
Serial.print(F("Setting filter resonance to: "));
Serial.println(mapfloat(effect_filter_resonance, 0, ENC_FILTER_RES_STEPS, 0.7, 5.0), 2);
#endif
break;
case UI_MAIN_FILTER_OCT:
if (enc[i].read() <= 0)
enc[i].write(0);
else if (enc[i].read() > ENC_FILTER_OCT_STEPS)
enc[i].write(ENC_FILTER_OCT_STEPS);
effect_filter_octave = enc[i].read();
filter1.octaveControl(mapfloat(effect_filter_octave, 0, ENC_FILTER_OCT_STEPS, 0.0, 7.0));
#ifdef DEBUG
Serial.print(F("Setting filter octave control to: "));
Serial.println(mapfloat(effect_filter_octave, 0, ENC_FILTER_OCT_STEPS, 0.0, 7.0), 2);
#endif
break;
}
ui_show_effects_filter();
break;
case UI_EFFECTS_DELAY:
switch (ui_main_state)
{
case UI_MAIN_DELAY_TIME:
if (enc[i].read() <= 0)
enc[i].write(0);
else if (enc[i].read() > ENC_DELAY_TIME_STEPS)
enc[i].write(ENC_DELAY_TIME_STEPS);
effect_delay_time = enc[i].read();;
delay1.delay(0, mapfloat(effect_delay_time, 0, ENC_DELAY_TIME_STEPS, 0.0, DELAY_MAX_TIME));
#ifdef DEBUG
Serial.print(F("Setting delay time to: "));
Serial.println(map(effect_delay_time, 0, ENC_DELAY_TIME_STEPS, 0, DELAY_MAX_TIME));
#endif
break;
case UI_MAIN_DELAY_FEEDBACK:
if (enc[i].read() <= 0)
enc[i].write(0);
else if (enc[i].read() > ENC_DELAY_FB_STEPS)
enc[i].write(ENC_DELAY_FB_STEPS);
effect_delay_feedback = enc[i].read();
mixer1.gain(1, mapfloat(float(effect_delay_feedback), 0, ENC_DELAY_FB_STEPS, 0.0, 1.0));
#ifdef DEBUG
Serial.print(F("Setting delay feedback to: "));
Serial.println(mapfloat(float(effect_delay_feedback), 0, ENC_DELAY_FB_STEPS, 0.0, 1.0));
#endif
break;
case UI_MAIN_DELAY_VOLUME:
if (enc[i].read() <= 0)
enc[i].write(0);
else if (enc[i].read() > ENC_DELAY_VOLUME_STEPS)
enc[i].write(ENC_DELAY_VOLUME_STEPS);
effect_delay_volume = enc[i].read();
mixer2.gain(1, mapfloat(effect_delay_volume, 0, 99, 0.0, 1.0)); // delay tap1 signal (with added feedback)
#ifdef DEBUG
Serial.print(F("Setting delay volume to: "));
Serial.println(effect_delay_volume);
#endif
break;
}
ui_show_effects_delay();
break;
}
break;
}
#ifdef DEBUG
Serial.print(F("Encoder "));
Serial.print(i, DEC);
Serial.print(F(": "));
Serial.println(enc[i].read(), DEC);
#endif
}
enc_val[i] = enc[i].read();
}
}
void ui_show_main(void)
{
if (ui_state != UI_MAIN)
{
lcd.clear();
}
lcd.show(0, 0, 2, bank);
lcd.show(0, 2, 1, " ");
strip_extension(bank_names[bank], bank_name);
if (ui_main_state == UI_MAIN_BANK || ui_main_state == UI_MAIN_BANK_SELECTED)
{
lcd.show(0, 2, 1, "[");
lcd.show(0, 3, 8, bank_name);
lcd.show(0, 11, 1, "]");
}
else
{
lcd.show(0, 2, 1, " ");
lcd.show(0, 3, 8, bank_name);
lcd.show(0, 11, 1, " ");
}
lcd.show(1, 0, 2, voice + 1);
lcd.show(1, 2, 1, " ");
if (ui_main_state == UI_MAIN_VOICE || ui_main_state == UI_MAIN_VOICE_SELECTED)
{
lcd.show(1, 2, 1, "[");
lcd.show(1, 3, 10, voice_names[voice]);
lcd.show(1, 14, 1, "]");
}
else
{
lcd.show(1, 2, 1, " ");
lcd.show(1, 3, 10, voice_names[voice]);
lcd.show(1, 14, 1, " ");
}
ui_state = UI_MAIN;
}
void ui_show_volume(void)
{
ui_back_to_main = 0;
if (ui_state != UI_VOLUME)
{
lcd.clear();
lcd.show(0, 0, LCD_CHARS, "Volume");
}
lcd.show(0, LCD_CHARS - 3, 3, vol * 100);
if (vol == 0.0)
lcd.show(1, 0, LCD_CHARS , " ");
else
{
if (vol < (float(LCD_CHARS) / 100))
lcd.show(1, 0, LCD_CHARS, "*");
else
{
for (uint8_t i = 0; i < map(vol * 100, 0, 100, 0, LCD_CHARS); i++)
lcd.show(1, i, 1, "*");
for (uint8_t i = map(vol * 100, 0, 100, 0, LCD_CHARS); i < LCD_CHARS; i++)
lcd.show(1, i, 1, " ");
}
}
ui_state = UI_VOLUME;
}
void ui_show_midichannel(void)
{
ui_back_to_main = 0;
if (ui_state != UI_MIDICHANNEL)
{
lcd.clear();
lcd.show(0, 0, LCD_CHARS, "MIDI Channel");
}
if (midi_channel == MIDI_CHANNEL_OMNI)
lcd.show(1, 0, 4, "OMNI");
else
{
lcd.show(1, 0, 2, midi_channel);
if (midi_channel == 1)
lcd.show(1, 2, 2, " ");
}
ui_state = UI_MIDICHANNEL;
}
void ui_show_effects_filter(void)
{
if (ui_state != UI_EFFECTS_FILTER)
{
lcd.clear();
lcd.show(0, 0, LCD_CHARS, "Filter");
lcd.show(0, 7, 2, "F:");
lcd.show(1, 0, 4, "Res:");
lcd.show(1, 8, 4, "Oct:");
}
lcd.show(0, 10, 4, uint16_t(EXP_FUNC((float)map(effect_filter_frq, 0, ENC_FILTER_FRQ_STEPS, 0, 1024) / 150.0) * 10.0 + 80.5));
lcd.show(1, 5, 2, map(effect_filter_resonance, 0, ENC_FILTER_RES_STEPS, 0, 99));
lcd.show(1, 13, 2, map(effect_filter_octave, 0, ENC_FILTER_OCT_STEPS, 0, 80));
if (ui_main_state == UI_MAIN_FILTER_FRQ)
{
lcd.show(0, 9, 1, "[");
lcd.show(0, 14, 1, "]");
}
else
{
lcd.show(0, 9, 1, " ");
lcd.show(0, 14, 1, " ");
}
if (ui_main_state == UI_MAIN_FILTER_RES)
{
lcd.show(1, 4, 1, "[");
lcd.show(1, 7, 1, "]");
}
else
{
lcd.show(1, 4, 1, " ");
lcd.show(1, 7, 1, " ");
}
if (ui_main_state == UI_MAIN_FILTER_OCT)
{
lcd.show(1, 12, 1, "[");
lcd.show(1, 15, 1, "]");
}
else
{
lcd.show(1, 12, 1, " ");
lcd.show(1, 15, 1, " ");
}
ui_state = UI_EFFECTS_FILTER;
}
void ui_show_effects_delay(void)
{
if (ui_state != UI_EFFECTS_DELAY)
{
lcd.clear();
lcd.show(0, 0, 5, "Delay");
lcd.show(0, 6, 2, "T:");
lcd.show(0, 14, 2, "ms");
lcd.show(1, 0, 3, "FB:");
lcd.show(1, 8, 5, "Vol:");
}
lcd.show(0, 9, 4, map(effect_delay_time, 0, ENC_DELAY_TIME_STEPS, 0, 1200));
lcd.show(1, 4, 2, map(effect_delay_feedback, 0, ENC_DELAY_FB_STEPS, 0, 99));
lcd.show(1, 13, 2, map(effect_delay_volume, 0, ENC_DELAY_VOLUME_STEPS, 0, 99));
if (ui_main_state == UI_MAIN_DELAY_TIME)
{
lcd.show(0, 8, 1, "[");
lcd.show(0, 13, 1, "]");
}
else
{
lcd.show(0, 8, 1, " ");
lcd.show(0, 13, 1, " ");
}
if (ui_main_state == UI_MAIN_DELAY_FEEDBACK)
{
lcd.show(1, 3, 1, "[");
lcd.show(1, 6, 1, "]");
}
else
{
lcd.show(1, 3, 1, " ");
lcd.show(1, 6, 1, " ");
}
if (ui_main_state == UI_MAIN_DELAY_VOLUME)
{
lcd.show(1, 12, 1, "[");
lcd.show(1, 15, 1, "]");
}
else
{
lcd.show(1, 12, 1, " ");
lcd.show(1, 15, 1, " ");
}
ui_state = UI_EFFECTS_DELAY;
}
float mapfloat(float val, float in_min, float in_max, float out_min, float out_max)
{
return (val - in_min) * (out_max - out_min) / (in_max - in_min) + out_min;
}
#endif