You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
361 lines
12 KiB
361 lines
12 KiB
/*
|
|
* Copyright (C) 2015-2017 Pascal Gauthier.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*
|
|
* The code is based on ppplay https://github.com/stohrendorf/ppplay and opl3
|
|
* math documentation :
|
|
* https://github.com/gtaylormb/opl3_fpga/blob/master/docs/opl3math/opl3math.pdf
|
|
*
|
|
*/
|
|
|
|
#include <Arduino.h>
|
|
#include "EngineMkI.h"
|
|
#define _USE_MATH_DEFINES
|
|
#include <cmath>
|
|
#include <cstdlib>
|
|
|
|
#include "sin.h"
|
|
#include "exp2.h"
|
|
|
|
#ifdef DEBUG
|
|
#include "time.h"
|
|
//#define MKIDEBUG
|
|
#endif
|
|
|
|
#ifdef _WIN32
|
|
#if _MSC_VER < 1800
|
|
double log2(double n) {
|
|
return log(n) / log(2.0);
|
|
}
|
|
double round(double n) {
|
|
return n < 0.0 ? ceil(n - 0.5) : floor(n + 0.5);
|
|
}
|
|
#endif
|
|
__declspec(align(16)) const int zeros[N] = {0};
|
|
#else
|
|
const int32_t __attribute__ ((aligned(16))) zeros[_N_] = {0};
|
|
#endif
|
|
|
|
static const uint16_t NEGATIVE_BIT = 0x8000;
|
|
static const uint16_t ENV_BITDEPTH = 14;
|
|
|
|
static const uint16_t SINLOG_BITDEPTH = 10;
|
|
static const uint16_t SINLOG_TABLESIZE = 1<<SINLOG_BITDEPTH;
|
|
static uint16_t sinLogTable[SINLOG_TABLESIZE];
|
|
|
|
static const uint16_t SINEXP_BITDEPTH = 10;
|
|
static const uint16_t SINEXP_TABLESIZE = 1<<SINEXP_BITDEPTH;
|
|
static uint16_t sinExpTable[SINEXP_TABLESIZE];
|
|
|
|
const uint16_t ENV_MAX = 1<<ENV_BITDEPTH;
|
|
|
|
static inline uint16_t sinLog(uint16_t phi) {
|
|
const uint16_t SINLOG_TABLEFILTER = SINLOG_TABLESIZE-1;
|
|
const uint16_t index = (phi & SINLOG_TABLEFILTER);
|
|
|
|
switch( ( phi & (SINLOG_TABLESIZE * 3) ) ) {
|
|
case 0:
|
|
return sinLogTable[index];
|
|
case SINLOG_TABLESIZE:
|
|
return sinLogTable[index ^ SINLOG_TABLEFILTER];
|
|
case SINLOG_TABLESIZE * 2 :
|
|
return sinLogTable[index] | NEGATIVE_BIT;
|
|
default:
|
|
return sinLogTable[index ^ SINLOG_TABLEFILTER] | NEGATIVE_BIT;
|
|
}
|
|
}
|
|
|
|
EngineMkI::EngineMkI() {
|
|
float bitReso = SINLOG_TABLESIZE;
|
|
|
|
for(int i=0;i<SINLOG_TABLESIZE;i++) {
|
|
float x1 = sin(((0.5+i)/bitReso) * M_PI/2.0);
|
|
sinLogTable[i] = round(-1024 * log2(x1));
|
|
}
|
|
|
|
bitReso = SINEXP_TABLESIZE;
|
|
for(int i=0;i<SINEXP_TABLESIZE;i++) {
|
|
float x1 = (pow(2, float(i)/bitReso)-1) * 4096;
|
|
sinExpTable[i] = round(x1);
|
|
}
|
|
|
|
#ifdef MKIDEBUG
|
|
char buffer[4096];
|
|
int pos = 0;
|
|
|
|
TRACE("****************************************");
|
|
for(int i=0;i<SINLOG_TABLESIZE;i++) {
|
|
pos += sprintf(buffer+pos, "%d ", sinLogTable[i]);
|
|
if ( pos > 90 ) {
|
|
TRACE("SINLOGTABLE: %s" ,buffer);
|
|
buffer[0] = 0;
|
|
pos = 0;
|
|
}
|
|
}
|
|
TRACE("SINLOGTABLE: %s", buffer);
|
|
buffer[0] = 0;
|
|
pos = 0;
|
|
TRACE("----------------------------------------");
|
|
for(int i=0;i<SINEXP_TABLESIZE;i++) {
|
|
pos += sprintf(buffer+pos, "%d ", sinExpTable[i]);
|
|
if ( pos > 90 ) {
|
|
TRACE("SINEXTTABLE: %s" ,buffer);
|
|
buffer[0] = 0;
|
|
pos = 0;
|
|
}
|
|
}
|
|
TRACE("SINEXTTABLE: %s", buffer);
|
|
TRACE("****************************************");
|
|
#endif
|
|
}
|
|
|
|
inline int32_t mkiSin(int32_t phase, uint16_t env) {
|
|
uint16_t expVal = sinLog(phase >> (22 - SINLOG_BITDEPTH)) + (env);
|
|
//int16_t expValShow = expVal;
|
|
|
|
const bool isSigned = expVal & NEGATIVE_BIT;
|
|
expVal &= ~NEGATIVE_BIT;
|
|
|
|
const uint16_t SINEXP_FILTER = 0x3FF;
|
|
uint16_t result = 4096 + sinExpTable[( expVal & SINEXP_FILTER ) ^ SINEXP_FILTER];
|
|
|
|
//uint16_t resultB4 = result;
|
|
result >>= ( expVal >> 10 ); // exp
|
|
|
|
#ifdef MKIDEBUG
|
|
if ( ( time(NULL) % 5 ) == 0 ) {
|
|
if ( expValShow < 0 ) {
|
|
expValShow = (expValShow + 0x7FFF) * -1;
|
|
}
|
|
//TRACE(",%d,%d,%d,%d,%d,%d", phase >> (22 - SINLOG_BITDEPTH), env, expValShow, ( expVal & SINEXP_FILTER ) ^ SINEXP_FILTER, resultB4, result);
|
|
}
|
|
#endif
|
|
|
|
if( isSigned )
|
|
return (-result - 1) << 13;
|
|
else
|
|
return result << 13;
|
|
}
|
|
|
|
void EngineMkI::compute(int32_t *output, const int32_t *input,
|
|
int32_t phase0, int32_t freq,
|
|
int32_t gain1, int32_t gain2, bool add) {
|
|
int32_t dgain = (gain2 - gain1 + (_N_ >> 1)) >> LG_N;
|
|
int32_t gain = gain1;
|
|
int32_t phase = phase0;
|
|
const int32_t *adder = add ? output : zeros;
|
|
|
|
for (int i = 0; i < _N_; i++) {
|
|
gain += dgain;
|
|
int32_t y = mkiSin((phase+input[i]), gain);
|
|
output[i] = y + adder[i];
|
|
phase += freq;
|
|
}
|
|
|
|
}
|
|
|
|
void EngineMkI::compute_pure(int32_t *output, int32_t phase0, int32_t freq,
|
|
int32_t gain1, int32_t gain2, bool add) {
|
|
int32_t dgain = (gain2 - gain1 + (_N_ >> 1)) >> LG_N;
|
|
int32_t gain = gain1;
|
|
int32_t phase = phase0;
|
|
const int32_t *adder = add ? output : zeros;
|
|
|
|
for (int i = 0; i < _N_; i++) {
|
|
gain += dgain;
|
|
int32_t y = mkiSin(phase , gain);
|
|
output[i] = y + adder[i];
|
|
phase += freq;
|
|
}
|
|
}
|
|
|
|
void EngineMkI::compute_fb(int32_t *output, int32_t phase0, int32_t freq,
|
|
int32_t gain1, int32_t gain2,
|
|
int32_t *fb_buf, int fb_shift, bool add) {
|
|
int32_t dgain = (gain2 - gain1 + (_N_ >> 1)) >> LG_N;
|
|
int32_t gain = gain1;
|
|
int32_t phase = phase0;
|
|
const int32_t *adder = add ? output : zeros;
|
|
int32_t y0 = fb_buf[0];
|
|
int32_t y = fb_buf[1];
|
|
|
|
for (int i = 0; i < _N_; i++) {
|
|
gain += dgain;
|
|
int32_t scaled_fb = (y0 + y) >> (fb_shift + 1);
|
|
y0 = y;
|
|
y = mkiSin((phase+scaled_fb), gain);
|
|
output[i] = y + adder[i];
|
|
phase += freq;
|
|
}
|
|
|
|
fb_buf[0] = y0;
|
|
fb_buf[1] = y;
|
|
}
|
|
|
|
// exclusively used for ALGO 6 with feedback
|
|
void EngineMkI::compute_fb2(int32_t *output, FmOpParams *parms, int32_t gain01, int32_t gain02, int32_t *fb_buf, int fb_shift) {
|
|
int32_t dgain[2];
|
|
int32_t gain[2];
|
|
int32_t phase[2];
|
|
int32_t y0 = fb_buf[0];
|
|
int32_t y = fb_buf[1];
|
|
|
|
phase[0] = parms[0].phase;
|
|
phase[1] = parms[1].phase;
|
|
|
|
parms[1].gain_out = (ENV_MAX-(parms[1].level_in >> (28-ENV_BITDEPTH)));
|
|
|
|
gain[0] = gain01;
|
|
gain[1] = parms[1].gain_out == 0 ? (ENV_MAX-1) : parms[1].gain_out;
|
|
|
|
dgain[0] = (gain02 - gain01 + (_N_ >> 1)) >> LG_N;
|
|
dgain[1] = (parms[1].gain_out - (parms[1].gain_out == 0 ? (ENV_MAX-1) : parms[1].gain_out));
|
|
|
|
for (int i = 0; i < _N_; i++) {
|
|
int32_t scaled_fb = (y0 + y) >> (fb_shift + 1);
|
|
|
|
// op 0
|
|
gain[0] += dgain[0];
|
|
y0 = y;
|
|
y = mkiSin(phase[0]+scaled_fb, gain[0]);
|
|
phase[0] += parms[0].freq;
|
|
|
|
// op 1
|
|
gain[1] += dgain[1];
|
|
y = mkiSin(phase[1]+y, gain[1]);
|
|
phase[1] += parms[1].freq;
|
|
|
|
output[i] = y;
|
|
}
|
|
fb_buf[0] = y0;
|
|
fb_buf[1] = y;
|
|
}
|
|
|
|
// exclusively used for ALGO 4 with feedback
|
|
void EngineMkI::compute_fb3(int32_t *output, FmOpParams *parms, int32_t gain01, int32_t gain02, int32_t *fb_buf, int fb_shift) {
|
|
int32_t dgain[3];
|
|
int32_t gain[3];
|
|
int32_t phase[3];
|
|
int32_t y0 = fb_buf[0];
|
|
int32_t y = fb_buf[1];
|
|
|
|
phase[0] = parms[0].phase;
|
|
phase[1] = parms[1].phase;
|
|
phase[2] = parms[2].phase;
|
|
|
|
parms[1].gain_out = (ENV_MAX-(parms[1].level_in >> (28-ENV_BITDEPTH)));
|
|
parms[2].gain_out = (ENV_MAX-(parms[2].level_in >> (28-ENV_BITDEPTH)));
|
|
|
|
gain[0] = gain01;
|
|
gain[1] = parms[1].gain_out == 0 ? (ENV_MAX-1) : parms[1].gain_out;
|
|
gain[2] = parms[2].gain_out == 0 ? (ENV_MAX-1) : parms[2].gain_out;
|
|
|
|
dgain[0] = (gain02 - gain01 + (_N_ >> 1)) >> LG_N;
|
|
dgain[1] = (parms[1].gain_out - (parms[1].gain_out == 0 ? (ENV_MAX-1) : parms[1].gain_out));
|
|
dgain[2] = (parms[2].gain_out - (parms[2].gain_out == 0 ? (ENV_MAX-1) : parms[2].gain_out));
|
|
|
|
|
|
for (int i = 0; i < _N_; i++) {
|
|
int32_t scaled_fb = (y0 + y) >> (fb_shift + 1);
|
|
|
|
// op 0
|
|
gain[0] += dgain[0];
|
|
y0 = y;
|
|
y = mkiSin(phase[0]+scaled_fb, gain[0]);
|
|
phase[0] += parms[0].freq;
|
|
|
|
// op 1
|
|
gain[1] += dgain[1];
|
|
y = mkiSin(phase[1]+y, gain[1]);
|
|
phase[1] += parms[1].freq;
|
|
|
|
// op 2
|
|
gain[2] += dgain[2];
|
|
y = mkiSin(phase[2]+y, gain[2]);
|
|
phase[2] += parms[2].freq;
|
|
|
|
output[i] = y;
|
|
}
|
|
fb_buf[0] = y0;
|
|
fb_buf[1] = y;
|
|
}
|
|
|
|
void EngineMkI::render(int32_t *output, FmOpParams *params, int algorithm, int32_t *fb_buf, int32_t feedback_shift) {
|
|
const int kLevelThresh = ENV_MAX-100;
|
|
FmAlgorithm alg = algorithms[algorithm];
|
|
bool has_contents[3] = { true, false, false };
|
|
bool fb_on = feedback_shift < 16;
|
|
|
|
switch(algorithm) {
|
|
case 3 : case 5 :
|
|
if ( fb_on )
|
|
alg.ops[0] = 0xc4;
|
|
}
|
|
|
|
for (int op = 0; op < 6; op++) {
|
|
int flags = alg.ops[op];
|
|
bool add = (flags & OUT_BUS_ADD) != 0;
|
|
FmOpParams ¶m = params[op];
|
|
int inbus = (flags >> 4) & 3;
|
|
int outbus = flags & 3;
|
|
int32_t *outptr = (outbus == 0) ? output : buf_[outbus - 1].get();
|
|
int32_t gain1 = param.gain_out == 0 ? (ENV_MAX-1) : param.gain_out;
|
|
int32_t gain2 = ENV_MAX-(param.level_in >> (28-ENV_BITDEPTH));
|
|
param.gain_out = gain2;
|
|
|
|
if (gain1 <= kLevelThresh || gain2 <= kLevelThresh) {
|
|
|
|
if (!has_contents[outbus]) {
|
|
add = false;
|
|
}
|
|
|
|
if (inbus == 0 || !has_contents[inbus]) {
|
|
// PG: this is my 'dirty' implementation of FB for 2 and 3 operators...
|
|
if ((flags & 0xc0) == 0xc0 && fb_on) {
|
|
switch ( algorithm ) {
|
|
// three operator feedback, process exception for ALGO 4
|
|
case 3 :
|
|
compute_fb3(outptr, params, gain1, gain2, fb_buf, min((feedback_shift+2), 16));
|
|
params[1].phase += params[1].freq << LG_N; // hack, we already processed op-5 - op-4
|
|
params[2].phase += params[2].freq << LG_N; // yuk yuk
|
|
op += 2; // ignore the 2 other operators
|
|
break;
|
|
// two operator feedback, process exception for ALGO 6
|
|
case 5 :
|
|
compute_fb2(outptr, params, gain1, gain2, fb_buf, min((feedback_shift+2), 16));
|
|
params[1].phase += params[1].freq << LG_N; // yuk, hack, we already processed op-5
|
|
op++; // ignore next operator;
|
|
break;
|
|
default:
|
|
// one operator feedback, normal proces
|
|
compute_fb(outptr, param.phase, param.freq, gain1, gain2, fb_buf, feedback_shift, add);
|
|
break;
|
|
}
|
|
} else {
|
|
compute_pure(outptr, param.phase, param.freq, gain1, gain2, add);
|
|
}
|
|
} else {
|
|
compute(outptr, buf_[inbus - 1].get(), param.phase, param.freq, gain1, gain2, add);
|
|
}
|
|
|
|
has_contents[outbus] = true;
|
|
} else if (!add) {
|
|
has_contents[outbus] = false;
|
|
}
|
|
param.phase += param.freq << LG_N;
|
|
}
|
|
}
|
|
|
|
|