You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
MicroDexed/MicroDexed.ino

536 lines
17 KiB

/*
MicroDexed
MicroDexed is a port of the Dexed sound engine
(https://github.com/asb2m10/dexed) for the Teensy-3.5/3.6 with audio shield
(c)2018 H. Wirtz <wirtz@parasitstudio.de>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <Audio.h>
#include <Wire.h>
#include <SPI.h>
#include <SD.h>
#include <MIDI.h>
#include "dexed.h"
#include "dexed_sysex.h"
#include "config.h"
#ifdef USE_ONBOARD_USB_HOST
#include <USBHost_t36.h>
#endif
// GUItool: begin automatically generated code
AudioPlayQueue queue1; //xy=84,294
AudioOutputI2S i2s1; //xy=961,276
AudioConnection patchCord2(queue1, 0, i2s1, 0);
AudioConnection patchCord3(queue1, 0, i2s1, 1);
AudioControlSGTL5000 sgtl5000_1; //xy=507,403
// GUItool: end automatically generated code
MIDI_CREATE_INSTANCE(HardwareSerial, Serial1, MIDI);
Dexed* dexed = new Dexed(SAMPLE_RATE);
IntervalTimer sched_master_key_auto_disable;
bool sd_card_available = false;
bool master_key_enabled = false;
#ifdef SHOW_CPU_LOAD_MSEC
IntervalTimer sched_show_cpu_usage;
#endif
#ifdef USE_ONBOARD_USB_HOST
USBHost usb_host;
MIDIDevice midi_usb(usb_host);
#endif
#ifdef TEST_MIDI
IntervalTimer sched_note_on;
IntervalTimer sched_note_off;
uint8_t _voice_counter = 0;
#endif
void setup()
{
//while (!Serial) ; // wait for Arduino Serial Monitor
Serial.begin(SERIAL_SPEED);
delay(200);
Serial.println(F("MicroDexed based on https://github.com/asb2m10/dexed"));
Serial.println(F("(c)2018 H. Wirtz"));
Serial.println(F("setup start"));
// start up USB host
#ifdef USE_ONBOARD_USB_HOST
usb_host.begin();
#endif
// start MIDI
MIDI.begin(MIDI_CHANNEL_OMNI);
// start audio card
AudioMemory(AUDIO_MEM);
sgtl5000_1.enable();
sgtl5000_1.volume(VOLUME);
// start SD card
SPI.setMOSI(SDCARD_MOSI_PIN);
SPI.setSCK(SDCARD_SCK_PIN);
if (!SD.begin(SDCARD_CS_PIN))
{
Serial.println(F("SD card not accessable"));
}
else
{
Serial.println(F("SD card found."));
sd_card_available = true;
}
#ifdef SHOW_CPU_LOAD_MSEC
// Initialize processor and memory measurements
AudioProcessorUsageMaxReset();
AudioMemoryUsageMaxReset();
sched_show_cpu_usage.begin(show_cpu_and_mem_usage, SHOW_CPU_LOAD_MSEC * 1000);
#endif
// load default SYSEX data
load_sysex(DEFAULT_SYSEXFILE, DEFAULT_SYSEXSOUND);
#ifdef DEBUG
show_patch();
#endif
Serial.print(F("AUDIO_BLOCK_SAMPLES="));
Serial.println(AUDIO_BLOCK_SAMPLES);
#ifdef TEST_MIDI
Serial.println(F("MIDI test enabled"));
sched_note_on.begin(note_on, 2000000);
sched_note_off.begin(note_off, 6333333);
#endif
Serial.println(F("setup end"));
show_cpu_and_mem_usage();
#ifdef TEST_MIDI
//dexed->data[DEXED_VOICE_OFFSET+DEXED_LFO_PITCH_MOD_DEP] = 99; // full pitch mod depth
//dexed->data[DEXED_VOICE_OFFSET+DEXED_LFO_PITCH_MOD_SENS] = 99; // full pitch mod sense
//dexed->data[DEXED_GLOBAL_PARAMETER_OFFSET+DEXED_MODWHEEL_ASSIGN] = 7; // mod wheel assign all
//dexed->data[DEXED_GLOBAL_PARAMETER_OFFSET+DEXED_FOOTCTRL_ASSIGN] = 7; // foot ctrl assign all
//dexed->data[DEXED_GLOBAL_PARAMETER_OFFSET+DEXED_BREATHCTRL_ASSIGN] = 7; // breath ctrl assign all
//dexed->data[DEXED_GLOBAL_PARAMETER_OFFSET+AT_ASSIGN] = 7; // at ctrl assign all
//queue_midi_event(0xb0, 1, 99); // test mod wheel
//queue_midi_event(0xb0, 2, 99); // test breath ctrl
//queue_midi_event(0xb0, 4, 99); // test food switch
//queue_midi_event(0xd0, 4, 99); // test at
//queue_midi_event(0xe0, 0xff, 0xff); // test pitch bend
#endif
}
void loop()
{
int16_t* audio_buffer; // pointer to 128 * int16_t (=256 bytes!)
while (42 == 42) // DON'T PANIC!
{
handle_midi_input();
audio_buffer = queue1.getBuffer();
if (audio_buffer == NULL)
{
Serial.println(F("E: audio_buffer allocation problems!"));
}
if (!queue1.available())
continue;
#if defined(SHOW_DEXED_TIMING) || defined(SHOW_XRUN)
elapsedMicros t1;
#endif
dexed->getSamples(AUDIO_BLOCK_SAMPLES, audio_buffer);
#ifdef SHOW_XRUN
uint32_t t2 = t1;
if (t2 > 2900) // everything greater 2.9ms is a buffer underrun!
Serial.println(F("XRUN"));
#endif
#ifdef SHOW_DEXED_TIMING
Serial.println(t1, DEC);
#endif
queue1.playBuffer();
}
}
void handle_midi_input(void)
{
#ifdef USE_ONBOARD_USB_HOST
usb_host.Task();
while (midi_usb.read())
{
if (MIDI.getType() == 0xF0) // SysEX
{
handle_sysex_parameter(MIDI.getSysExArray(), MIDI.getSysExArrayLength());
}
else if (queue_midi_event(midi_usb.getType(), midi_usb.getData1(), midi_usb.getData2()))
return;
}
#endif
while (MIDI.read())
{
if (MIDI.getType() == 0xF0) // SYSEX
{
handle_sysex_parameter(MIDI.getSysExArray(), MIDI.getSysExArrayLength());
}
else
{
if (queue_midi_event(MIDI.getType(), MIDI.getData1(), MIDI.getData2()))
return;
}
}
}
#ifdef TEST_MIDI
void note_on(void)
{
randomSeed(analogRead(A0));
queue_midi_event(0x90, TEST_NOTE, random(TEST_VEL_MIN, TEST_VEL_MAX));
// 1
queue_midi_event(0x90, TEST_NOTE + 5, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 2
queue_midi_event(0x90, TEST_NOTE + 8, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 3
queue_midi_event(0x90, TEST_NOTE + 12, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 4
queue_midi_event(0x90, TEST_NOTE + 17, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 5
queue_midi_event(0x90, TEST_NOTE + 20, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 6
queue_midi_event(0x90, TEST_NOTE + 24, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 7
queue_midi_event(0x90, TEST_NOTE + 29, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 8
queue_midi_event(0x90, TEST_NOTE + 32, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 9
queue_midi_event(0x90, TEST_NOTE + 37, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 10
queue_midi_event(0x90, TEST_NOTE + 40, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 11
queue_midi_event(0x90, TEST_NOTE + 44, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 12
queue_midi_event(0x90, TEST_NOTE + 49, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 13
queue_midi_event(0x90, TEST_NOTE + 52, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 14
queue_midi_event(0x90, TEST_NOTE + 57, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 15
queue_midi_event(0x90, TEST_NOTE + 60, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 16
}
void note_off(void)
{
queue_midi_event(0x80, TEST_NOTE, 0); // 1
queue_midi_event(0x80, TEST_NOTE + 5, 0); // 2
queue_midi_event(0x80, TEST_NOTE + 8, 0); // 3
queue_midi_event(0x80, TEST_NOTE + 12, 0); // 4
queue_midi_event(0x80, TEST_NOTE + 17, 0); // 5
queue_midi_event(0x80, TEST_NOTE + 20, 0); // 6
queue_midi_event(0x80, TEST_NOTE + 24, 0); // 7
queue_midi_event(0x80, TEST_NOTE + 29, 0); // 8
queue_midi_event(0x80, TEST_NOTE + 32, 0); // 9
queue_midi_event(0x80, TEST_NOTE + 37, 0); // 10
queue_midi_event(0x80, TEST_NOTE + 40, 0); // 11
queue_midi_event(0x80, TEST_NOTE + 44, 0); // 12
queue_midi_event(0x80, TEST_NOTE + 49, 0); // 13
queue_midi_event(0x80, TEST_NOTE + 52, 0); // 14
queue_midi_event(0x80, TEST_NOTE + 57, 0); // 15
queue_midi_event(0x80, TEST_NOTE + 60, 0); // 16
//bool success=true;
//bool success = load_sysex("ROM1A.SYX", (++_voice_counter)-1);
//bool success=load_sysex("ROM1B.SYX", (++_voice_counter)-1);
//bool success=load_sysex("RITCH01-32.SYX", (++_voice_counter)-1);
//bool success=load_sysex("RITCH33-64.SYX", (++_voice_counter)-1);
bool success = load_sysex(DEFAULT_SYSEXFILE, (++_voice_counter) - 1);
if (success == false)
Serial.println(F("E: Cannot load SYSEX data"));
else
show_patch();
}
#endif
bool handle_master_key(uint8_t data)
{
int8_t num = num_key_base_c(data);
if (num > 0)
{
// a white key!
num = num - 1 + (((data - MASTER_NUM1) / 12) * 7);
if (num <= 32)
{
if (!load_sysex(DEFAULT_SYSEXFILE, num))
{
Serial.print("E: cannot load voice number ");
Serial.println(num, DEC);
}
}
return (true);
}
else
{
// a black key!
num = abs(num) + (((data - MASTER_NUM1) / 12) * 7);
if (num <= 10)
sgtl5000_1.volume(num * 0.1);
}
return (false);
}
bool queue_midi_event(uint8_t type, uint8_t data1, uint8_t data2)
{
#ifdef SHOW_MIDI_EVENT
Serial.print("MIDI event type: ");
Serial.print(type, DEC);
Serial.print(" data1: ");
Serial.print(data1, DEC);
Serial.print(" data2: ");
Serial.println(data2, DEC);
#endif
if (master_key_enabled == true)
{
master_key_enabled = handle_master_key(data1);
if (master_key_enabled == false)
Serial.println("Master key disabled");
}
else
{
if (type == 0x80 && data1 == MASTER_KEY_MIDI) // ignore Master key up
return (false);
else if (type == 0x90 && data1 == MASTER_KEY_MIDI) // Master key pressed
{
master_key_enabled = true;
sched_master_key_auto_disable.begin(master_key_auto_disable, MASTER_KEY_AUTO_DISABLE_MSEC * 1000);
Serial.println("Master key enabled");
}
else
return (dexed->processMidiMessage(type, data1, data2));
}
return (false);
}
int8_t num_key_base_c(uint8_t midi_note)
{
switch (midi_note % 12)
{
// positive numbers are white keys, negative black ones
case 0:
return (1);
case 1:
return (-1);
case 2:
return (2);
case 3:
return (-2);
case 4:
return (3);
case 5:
return (4);
case 6:
return (-3);
case 7:
return (5);
case 8:
return (-4);
case 9:
return (6);
case 10:
return (-5);
case 11:
return (7);
}
return (0);
}
void handle_sysex_parameter(const uint8_t* sysex, uint8_t len)
{
// parse parameter change
if (len == 7)
{
if (sysex[1] != 0x43) // check for Yamaha sysex
{
Serial.println(F("E: SysEx vendor not Yamaha."));
return;
}
if ((sysex[3] & 0x7c) != 0 || (sysex[3] & 0x7c) != 2)
{
Serial.println(F("E: Not a SysEx parameter or function parameter change."));
return;
}
if (sysex[6] != 0xf7)
{
Serial.println(F("E: SysEx end status byte not detected."));
return;
}
if ((sysex[3] & 0x7c) == 0)
{
dexed->data[sysex[4]] = sysex[5]; // set parameter
dexed->doRefreshVoice();
}
else
{
dexed->data[DEXED_GLOBAL_PARAMETER_OFFSET - 63 + sysex[4]] = sysex[5]; // set function parameter
dexed->controllers.values_[kControllerPitchRange] = dexed->data[DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_PITCHBEND_RANGE];
dexed->controllers.values_[kControllerPitchStep] = dexed->data[DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_PITCHBEND_STEP];
dexed->controllers.wheel.setRange(dexed->data[DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_MODWHEEL_RANGE]);
dexed->controllers.wheel.setTarget(dexed->data[DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_MODWHEEL_ASSIGN]);
dexed->controllers.foot.setRange(dexed->data[DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_FOOTCTRL_RANGE]);
dexed->controllers.foot.setTarget(dexed->data[DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_FOOTCTRL_ASSIGN]);
dexed->controllers.breath.setRange(dexed->data[DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_BREATHCTRL_RANGE]);
dexed->controllers.breath.setTarget(dexed->data[DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_BREATHCTRL_ASSIGN]);
dexed->controllers.at.setRange(dexed->data[DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_AT_RANGE]);
dexed->controllers.at.setTarget(dexed->data[DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_AT_ASSIGN]);
dexed->controllers.masterTune = (dexed->data[DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_MASTER_TUNE] * 0x4000 << 11) * (1.0 / 12);
dexed->controllers.refresh();
}
Serial.print(F("SysEx"));
if ((sysex[3] & 0x7c) == 0)
Serial.print(F(" function"));
Serial.print(F(" parameter "));
Serial.print(sysex[4], DEC);
Serial.print(F("="));
Serial.println(sysex[5], DEC);
}
else
Serial.println(F("E: SysEx parameter length wrong."));
}
void master_key_auto_disable(void)
{
if (master_key_enabled == true)
{
master_key_enabled = false;
Serial.println("Auto disabling master key");
}
sched_master_key_auto_disable.end();
}
#ifdef SHOW_CPU_LOAD_MSEC
void show_cpu_and_mem_usage(void)
{
Serial.print(F("CPU:"));
Serial.print(AudioProcessorUsage(), DEC);
Serial.print(F(" CPU MAX:"));
Serial.print(AudioProcessorUsageMax(), DEC);
Serial.print(F(" MEM:"));
Serial.print(AudioMemoryUsage(), DEC);
Serial.print(F(" MEM MAX:"));
Serial.print(AudioMemoryUsageMax(), DEC);
Serial.println();
AudioProcessorUsageMaxReset();
AudioMemoryUsageMaxReset();
}
#endif
#ifdef DEBUG
void show_patch(void)
{
uint8_t i;
char voicename[11];
memset(voicename, 0, sizeof(voicename));
for (i = 0; i < 6; i++)
{
Serial.print(F("OP"));
Serial.print(6 - i, DEC);
Serial.println(F(":"));
Serial.println(F("R1|R2|R3|R4|L1|L2|L3|L4 LEV_SCL_BRK_PT|SCL_LEFT_DEPTH|SCL_RGHT_DEPTH"));
Serial.print(dexed->data[(i * 21) + DEXED_OP_EG_R1], DEC);
Serial.print(F(" "));
Serial.print(dexed->data[(i * 21) + DEXED_OP_EG_R2], DEC);
Serial.print(F(" "));
Serial.print(dexed->data[(i * 21) + DEXED_OP_EG_R3], DEC);
Serial.print(F(" "));
Serial.print(dexed->data[(i * 21) + DEXED_OP_EG_R4], DEC);
Serial.print(F(" "));
Serial.print(dexed->data[(i * 21) + DEXED_OP_EG_L1], DEC);
Serial.print(F(" "));
Serial.print(dexed->data[(i * 21) + DEXED_OP_EG_L2], DEC);
Serial.print(F(" "));
Serial.print(dexed->data[(i * 21) + DEXED_OP_EG_L3], DEC);
Serial.print(F(" "));
Serial.print(dexed->data[(i * 21) + DEXED_OP_EG_L4], DEC);
Serial.print(F(" "));
Serial.print(dexed->data[(i * 21) + DEXED_OP_LEV_SCL_BRK_PT], DEC);
Serial.print(F(" "));
Serial.print(dexed->data[(i * 21) + DEXED_OP_SCL_LEFT_DEPTH], DEC);
Serial.print(F(" "));
Serial.println(dexed->data[(i * 21) + DEXED_OP_SCL_RGHT_DEPTH], DEC);
Serial.println(F("SCL_L_CURVE|SCL_R_CURVE|RT_SCALE| AMS | KVS |OUT_LEV|OP_MOD|FRQ_C|FRQ_F|DETUNE"));
Serial.print(F(" "));
Serial.print(dexed->data[(i * 21) + DEXED_OP_SCL_LEFT_CURVE], DEC);
Serial.print(F(" "));
Serial.print(dexed->data[(i * 21) + DEXED_OP_SCL_RGHT_CURVE], DEC);
Serial.print(F(" "));
Serial.print(dexed->data[(i * 21) + DEXED_OP_OSC_RATE_SCALE], DEC);
Serial.print(F(" "));
Serial.print(dexed->data[(i * 21) + DEXED_OP_AMP_MOD_SENS], DEC);
Serial.print(F(" "));
Serial.print(dexed->data[(i * 21) + DEXED_OP_KEY_VEL_SENS], DEC);
Serial.print(F(" "));
Serial.print(dexed->data[(i * 21) + DEXED_OP_OUTPUT_LEV], DEC);
Serial.print(F(" "));
Serial.print(dexed->data[(i * 21) + DEXED_OP_OSC_MODE], DEC);
Serial.print(F(" "));
Serial.print(dexed->data[(i * 21) + DEXED_OP_FREQ_COARSE], DEC);
Serial.print(F(" "));
Serial.print(dexed->data[(i * 21) + DEXED_OP_FREQ_FINE], DEC);
Serial.print(F(" "));
Serial.println(dexed->data[(i * 21) + DEXED_OP_OSC_DETUNE], DEC);
}
Serial.println(F("PR1|PR2|PR3|PR4|PL1|PL2|PL3|PL4"));
Serial.print(F(" "));
for (i = 0; i < 8; i++)
{
Serial.print(dexed->data[DEXED_VOICE_OFFSET + i], DEC);
Serial.print(F(" "));
}
Serial.println();
Serial.print(F("ALG: "));
Serial.println(dexed->data[DEXED_VOICE_OFFSET + DEXED_ALGORITHM], DEC);
Serial.print(F("FB: "));
Serial.println(dexed->data[DEXED_VOICE_OFFSET + DEXED_FEEDBACK], DEC);
Serial.print(F("OKS: "));
Serial.println(dexed->data[DEXED_VOICE_OFFSET + DEXED_OSC_KEY_SYNC], DEC);
Serial.print(F("LFO SPD: "));
Serial.println(dexed->data[DEXED_VOICE_OFFSET + DEXED_LFO_SPEED], DEC);
Serial.print(F("LFO_DLY: "));
Serial.println(dexed->data[DEXED_VOICE_OFFSET + DEXED_LFO_DELAY], DEC);
Serial.print(F("LFO PMD: "));
Serial.println(dexed->data[DEXED_VOICE_OFFSET + DEXED_LFO_PITCH_MOD_DEP], DEC);
Serial.print(F("LFO_AMD: "));
Serial.println(dexed->data[DEXED_VOICE_OFFSET + DEXED_LFO_AMP_MOD_DEP], DEC);
Serial.print(F("LFO_SYNC: "));
Serial.println(dexed->data[DEXED_VOICE_OFFSET + DEXED_LFO_SYNC], DEC);
Serial.print(F("LFO_WAVEFRM: "));
Serial.println(dexed->data[DEXED_VOICE_OFFSET + DEXED_LFO_WAVE], DEC);
Serial.print(F("LFO_PMS: "));
Serial.println(dexed->data[DEXED_VOICE_OFFSET + DEXED_LFO_PITCH_MOD_SENS], DEC);
Serial.print(F("TRNSPSE: "));
Serial.println(dexed->data[DEXED_VOICE_OFFSET + DEXED_TRANSPOSE], DEC);
Serial.print(F("NAME: "));
strncpy(voicename, (char *)&dexed->data[DEXED_VOICE_OFFSET + DEXED_NAME], sizeof(voicename) - 1);
Serial.print(F("["));
Serial.print(voicename);
Serial.println(F("]"));
for (i = DEXED_GLOBAL_PARAMETER_OFFSET; i <= DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_MAX_NOTES; i++)
{
Serial.print(i, DEC);
Serial.print(F(": "));
Serial.println(dexed->data[i]);
}
Serial.println();
}
#endif