/* MicroDexed MicroDexed is a port of the Dexed sound engine (https://github.com/asb2m10/dexed) for the Teensy-3.5/3.6 with audio shield. Dexed ist heavily based on https://github.com/google/music-synthesizer-for-android (c)2018,2019 H. Wirtz This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "config.h" #include #include #include #include #include #include #include #include "UI.hpp" #include "EEPROMAnything.h" #include "midi_devices.hpp" #include "dexed.h" #include "dexed_sysex.h" #include "effect_modulated_delay.h" #include "PluginFx.h" #include "SoftenValue.hpp" AudioPlayQueue queue1; AudioAnalyzePeak peak1; AudioEffectDelay delay1; #ifdef USE_REVERB AudioEffectFreeverbStereo freeverbs1; #endif AudioEffectModulatedDelay modchorus; #if MOD_FILTER_OUTPUT != MOD_NO_FILTER_OUTPUT AudioFilterBiquad modchorus_filter; #endif AudioSynthWaveform modulator; AudioMixer4 chorus_mixer; AudioMixer4 delay_mixer; AudioMixer4 delay_fb_mixer; AudioMixer4 reverb_mixer_r; AudioMixer4 reverb_mixer_l; AudioAmplifier volume_r; AudioAmplifier volume_l; #if defined(AUDIO_DEVICE_USB) AudioOutputUSB usb1; #endif AudioConnection patchCord0(queue1, peak1); AudioConnection patchCord1(queue1, 0, chorus_mixer, 0); AudioConnection patchCord3(queue1, 0, delay_mixer, 0); AudioConnection patchCord4(queue1, 0, delay_fb_mixer, 0); #ifdef USE_REVERB AudioConnection patchCord5(queue1, 0, reverb_mixer_r, 0); AudioConnection patchCord6(queue1, 0, reverb_mixer_l, 0); #endif AudioConnection patchCord7(queue1, 0, modchorus, 0); AudioConnection patchCord8(modulator, 0, modchorus, 1); #if MOD_FILTER_OUTPUT != MOD_NO_FILTER_OUTPUT AudioConnection patchCord9(modchorus, modchorus_filter); AudioConnection patchCord10(modchorus_filter, 0, chorus_mixer, 1); #else AudioConnection patchCord9(modchorus, 0, chorus_mixer, 1); #endif AudioConnection patchCord11(chorus_mixer, 0, delay_mixer, 1); AudioConnection patchCord12(delay_fb_mixer, 0, delay_mixer, 1); AudioConnection patchCord13(delay_mixer, 0, reverb_mixer_r, 0); AudioConnection patchCord14(delay_mixer, 0, reverb_mixer_l, 0); AudioConnection patchCord15(delay1, 0, delay_mixer, 2); AudioConnection patchCord16(delay_fb_mixer, delay1); #ifdef USE_REVERB AudioConnection patchCord17(delay_mixer, 0, freeverbs1, 0); AudioConnection patchCord18(delay_mixer, 0, freeverbs1, 1); AudioConnection patchCord19(freeverbs1, 0, reverb_mixer_r, 1); AudioConnection patchCord20(freeverbs1, 1, reverb_mixer_l, 1); AudioConnection patchCord21(reverb_mixer_r, volume_r); AudioConnection patchCord22(reverb_mixer_l, volume_l); #else AudioConnection patchCord17(delay_mixer, volume_r); AudioConnection patchCord18(delay_mixer, volume_l); #endif #if defined(AUDIO_DEVICE_USB) AudioConnection patchCord23(volume_r, 0, usb1, 0); AudioConnection patchCord24(volume_l, 0, usb1, 1); #endif #if defined(TEENSY_AUDIO_BOARD) || defined (I2S_AUDIO_ONLY) AudioOutputI2S i2s1; AudioConnection patchCord25(volume_r, 0, i2s1, 0); AudioConnection patchCord26(volume_l, 0, i2s1, 1); #endif #if defined(TEENSY_AUDIO_BOARD) AudioControlSGTL5000 sgtl5000_1; #elif defined(TGA_AUDIO_BOARD) AudioOutputI2S i2s1; AudioConnection patchCord27(volume_r, 0, i2s1, 0); AudioConnection patchCord28(volume_l, 0, i2s1, 1); AudioControlWM8731master wm8731_1; #elif !defined(I2S_AUDIO_ONLY) AudioOutputPT8211 pt8211_1; AudioConnection patchCord29(volume_r, 0, pt8211_1, 0); AudioConnection patchCord30(volume_l, 0, pt8211_1, 1); #endif Dexed* MicroDexed[NUM_DEXED]; bool sd_card_available = false; uint32_t xrun = 0; uint32_t overload = 0; uint32_t peak = 0; uint16_t render_time_max = 0; uint8_t max_loaded_banks = 0; char bank_name[BANK_NAME_LEN]; char voice_name[VOICE_NAME_LEN]; char bank_names[MAX_BANKS][BANK_NAME_LEN]; char voice_names[MAX_VOICES][VOICE_NAME_LEN]; elapsedMillis autostore; uint8_t midi_timing_counter = 0; // 24 per qarter elapsedMillis midi_timing_timestep; uint16_t midi_timing_quarter = 0; elapsedMillis long_button_pressed; //SoftenValue effect_filter_volume[NUM_DEXED](SOFTEN_VALUE_CHANGE_STEPS); //SoftenValue soften_filter_res[NUM_DEXED](SOFTEN_VALUE_CHANGE_STEPS); //SoftenValue soften_filter_cut[NUM_DEXED](SOFTEN_VALUE_CHANGE_STEPS); uint8_t effect_filter_cutoff = 0; uint8_t effect_filter_resonance = 0; uint8_t effect_delay_time = 0; uint8_t effect_delay_feedback = 0; uint8_t effect_delay_volume = 0; bool effect_delay_sync = 0; elapsedMicros fill_audio_buffer; elapsedMillis control_rate; uint8_t active_voices = 0; #ifdef SHOW_CPU_LOAD_MSEC elapsedMillis cpu_mem_millis; #endif config_t configuration = {0xffff, 0, 0, VOLUME, 0.5f, 0, DEFAULT_MIDI_CHANNEL}; bool eeprom_update_flag = false; value_change_t soften_volume = {0.0, 0}; value_change_t soften_filter_res = {0.0, 0}; value_change_t soften_filter_cut = {0.0, 0}; // Allocate the delay lines for left and right channels short delayline[MOD_DELAY_SAMPLE_BUFFER]; #ifdef ENABLE_LCD_UI /*********************************************************************** LCDMenuLib2 ***********************************************************************/ extern LCDMenuLib2 LCDML; extern uint8_t menu_state; #endif #ifdef DISPLAY_LCD_SPI void change_disp_sd(bool disp) { digitalWrite(SDCARD_CS_PIN, disp); digitalWrite(U8X8_CS_PIN, !disp); } #endif void setup() { //while (!Serial) ; // wait for Arduino Serial Monitor Serial.begin(SERIAL_SPEED); #ifdef DISPLAY_LCD_SPI pinMode(SDCARD_CS_PIN, OUTPUT); pinMode(U8X8_CS_PIN, OUTPUT); #endif #ifdef ENABLE_LCD_UI setup_ui(); #else Serial.println(F("NO LCD DISPLAY ENABLED!")); #endif for (uint8_t i = 0; i < NUM_DEXED; i++) { Serial.print(F("Creating MicroDexed engine ")); Serial.println(i, DEC); MicroDexed[i] = new Dexed(SAMPLE_RATE); } delay(220); Serial.println(F("MicroDexed based on https://github.com/asb2m10/dexed")); Serial.println(F("(c)2018,2019 H. Wirtz ")); Serial.println(F("https://codeberg.org/dcoredump/MicroDexed")); Serial.print(F("Version: ")); Serial.println(VERSION); Serial.println(F("")); initial_values_from_eeprom(); setup_midi_devices(); // start audio card AudioNoInterrupts(); AudioMemory(AUDIO_MEM); #ifdef TEENSY_AUDIO_BOARD sgtl5000_1.enable(); sgtl5000_1.dacVolumeRamp(); //sgtl5000_1.dacVolumeRampLinear(); //sgtl5000_1.dacVolumeRampDisable(); sgtl5000_1.unmuteHeadphone(); sgtl5000_1.unmuteLineout(); sgtl5000_1.autoVolumeDisable(); // turn off AGC sgtl5000_1.volume(0.5, 0.5); // Headphone volume sgtl5000_1.lineOutLevel(SGTL5000_LINEOUT_LEVEL); sgtl5000_1.audioPostProcessorEnable(); sgtl5000_1.autoVolumeControl(1, 1, 1, 0.9, 0.01, 0.05); sgtl5000_1.autoVolumeEnable(); sgtl5000_1.surroundSoundEnable(); sgtl5000_1.surroundSound(7, 2); // Configures virtual surround width from 0 (mono) to 7 (widest). select may be set to 1 (disable), 2 (mono input) or 3 (stereo input). sgtl5000_1.enhanceBassEnable(); sgtl5000_1.enhanceBass(1.0, 0.2, 1, 2); // Configures the bass enhancement by setting the levels of the original stereo signal and the bass-enhanced mono level which will be mixed together. The high-pass filter may be enabled (0) or bypassed (1). /* The cutoff frequency is specified as follows: value frequency 0 80Hz 1 100Hz 2 125Hz 3 150Hz 4 175Hz 5 200Hz 6 225Hz */ //sgtl5000_1.eqBands(bass, mid_bass, midrange, mid_treble, treble); Serial.println(F("Teensy-Audio-Board enabled.")); #elif defined(TGA_AUDIO_BOARD) wm8731_1.enable(); wm8731_1.volume(1.0); Serial.println(F("TGA board enabled.")); #elif defined(I2S_AUDIO_ONLY) Serial.println(F("I2S enabled.")); #else Serial.println(F("PT8211 enabled.")); #endif // start SD card #ifndef __IMXRT1062__ SPI.setMOSI(SDCARD_MOSI_PIN); SPI.setSCK(SDCARD_SCK_PIN); #endif #ifdef DISPLAY_LCD_SPI change_disp_sd(false); #endif if (!SD.begin(SDCARD_CS_PIN)) { Serial.println(F("SD card not accessable.")); strcpy(bank_name, "Default"); strcpy(voice_name, "Default"); } else { Serial.println(F("SD card found.")); sd_card_available = true; // read all bank names max_loaded_banks = get_bank_names(); strip_extension(bank_names[configuration.bank], bank_name); // read all voice name for actual bank get_voice_names_from_bank(configuration.bank); #ifdef DEBUG Serial.print(F("Bank [")); Serial.print(bank_names[configuration.bank]); Serial.print(F("/")); Serial.print(bank_name); Serial.println(F("]")); for (uint8_t n = 0; n < MAX_VOICES; n++) { if (n < 10) Serial.print(F(" ")); Serial.print(F(" ")); Serial.print(n, DEC); Serial.print(F("[")); Serial.print(voice_names[n]); Serial.println(F("]")); } #endif // load default SYSEX data load_sysex(configuration.bank, configuration.voice); } #ifdef DISPLAY_LCD_SPI change_disp_sd(true); #endif // Init effects if (!modchorus.begin(delayline, MOD_DELAY_SAMPLE_BUFFER)) { Serial.println(F("AudioEffectModulatedDelay - right channel begin failed")); while (1); } #ifdef DEBUG Serial.print(F("MOD_DELAY_SAMPLE_BUFFER=")); Serial.print(MOD_DELAY_SAMPLE_BUFFER, DEC); Serial.println(F(" samples")); #endif modulator.begin(MOD_WAVEFORM); modulator.phase(0); modulator.amplitude(0.5); modulator.offset(0.0); #if MOD_FILTER_OUTPUT == MOD_BUTTERWORTH_FILTER_OUTPUT // Butterworth filter, 12 db/octave modchorus_filter.setLowpass(0, MOD_FILTER_CUTOFF_HZ, 0.707); #elif MOD_FILTER_OUTPUT == MOD_LINKWITZ_RILEY_FILTER_OUTPUT // Linkwitz-Riley filter, 48 dB/octave modchorus_filter.setLowpass(0, MOD_FILTER_CUTOFF_HZ, 0.54); modchorus_filter.setLowpass(1, MOD_FILTER_CUTOFF_HZ, 1.3); modchorus_filter.setLowpass(2, MOD_FILTER_CUTOFF_HZ, 0.54); modchorus_filter.setLowpass(3, MOD_FILTER_CUTOFF_HZ, 1.3); modchorus_filter.setLowpass(0, MOD_FILTER_CUTOFF_HZ, 0.54); modchorus_filter.setLowpass(1, MOD_FILTER_CUTOFF_HZ, 1.3); modchorus_filter.setLowpass(2, MOD_FILTER_CUTOFF_HZ, 0.54); modchorus_filter.setLowpass(3, MOD_FILTER_CUTOFF_HZ, 1.3); #endif chorus_mixer.gain(0, 1.0); chorus_mixer.gain(1, 0.0); delay1.delay(0, mapfloat(effect_delay_feedback, 0, ENC_DELAY_TIME_STEPS, 0.0, DELAY_MAX_TIME)); // delay_fb_mixer is the feedback-adding mixer, delay_mixer_r the whole delay (with/without feedback) mixer delay_fb_mixer.gain(0, 1.0); // original signal delay_fb_mixer.gain(1, mapfloat(effect_delay_feedback, 0, ENC_DELAY_FB_STEPS, 0.0, 1.0)); // amount of feedback delay_mixer.gain(0, 1.0 - mapfloat(effect_delay_volume, 0, ENC_DELAY_VOLUME_STEPS, 0.0, 1.0)); // original signal delay_mixer.gain(1, mapfloat(effect_delay_volume, 0, ENC_DELAY_VOLUME_STEPS, 0.0, 1.0)); // delayed signal (including feedback) delay_mixer.gain(2, mapfloat(effect_delay_volume, 0, ENC_DELAY_VOLUME_STEPS, 0.0, 1.0)); // only delayed signal (without feedback) reverb_mixer_r.gain(0, 1.0); reverb_mixer_l.gain(0, 1.0); reverb_mixer_r.gain(1, 0.0); reverb_mixer_l.gain(1, 0.0); for (uint8_t i = 0; i < NUM_DEXED; i++) { MicroDexed[i]->fx.Gain = 1.0; MicroDexed[i]->fx.Reso = 1.0 - float(effect_filter_resonance) / ENC_FILTER_RES_STEPS; MicroDexed[i]->fx.Cutoff = 1.0 - float(effect_filter_cutoff) / ENC_FILTER_CUT_STEPS; } // set initial volume and pan (read from EEPROM) set_volume(configuration.vol, configuration.pan); #if defined (DEBUG) && defined (SHOW_CPU_LOAD_MSEC) // Initialize processor and memory measurements AudioProcessorUsageMaxReset(); AudioMemoryUsageMaxReset(); #endif #ifdef DEBUG Serial.print(F("Bank/Voice from EEPROM [")); Serial.print(configuration.bank, DEC); Serial.print(F("/")); Serial.print(configuration.voice, DEC); Serial.println(F("]")); show_patch(); #endif Serial.print(F("AUDIO_BLOCK_SAMPLES=")); Serial.print(AUDIO_BLOCK_SAMPLES); Serial.print(F(" (Time per block=")); Serial.print(1000000 / (SAMPLE_RATE / AUDIO_BLOCK_SAMPLES)); Serial.println(F("ms)")); #if defined (DEBUG) && defined (SHOW_CPU_LOAD_MSEC) show_cpu_and_mem_usage(); #endif AudioInterrupts(); Serial.println(F("")); } void loop() { int16_t* audio_buffer; // pointer to AUDIO_BLOCK_SAMPLES * int16_t const uint16_t audio_block_time_us = 1000000 / (SAMPLE_RATE / AUDIO_BLOCK_SAMPLES); while (42 == 42) { // Main sound calculation if (queue1.available() && fill_audio_buffer > audio_block_time_us - 10) { fill_audio_buffer = 0; audio_buffer = queue1.getBuffer(); elapsedMicros t1; for (uint8_t i = 0; i < NUM_DEXED; i++) { MicroDexed[i]->getSamples(AUDIO_BLOCK_SAMPLES, audio_buffer); } if (t1 > audio_block_time_us) // everything greater 2.9ms is a buffer underrun! xrun++; if (t1 > render_time_max) render_time_max = t1; if (peak1.available()) { if (peak1.read() > 0.99) peak++; } #ifndef TEENSY_AUDIO_BOARD for (uint8_t i = 0; i < AUDIO_BLOCK_SAMPLES; i++) audio_buffer[i] *= configuration.vol; #endif queue1.playBuffer(); } // EEPROM update handling if (autostore >= AUTOSTORE_MS && active_voices == 0 && eeprom_update_flag == true) { // only store configuration data to EEPROM when AUTOSTORE_MS is reached and no voices are activated anymore eeprom_update(); } // MIDI input handling check_midi_devices(); // CONTROL-RATE-EVENT-HANDLING if (control_rate > CONTROL_RATE_MS) { #ifdef ENABLE_LCD_UI // LCD Menu LCDML.loop(); // initial starts voice selection menu as default if (menu_state == MENU_START) { menu_state = MENU_VOICE; UI_func_voice_selection(0); } #endif control_rate = 0; // Shutdown unused voices for (uint8_t i = 0; i < NUM_DEXED; i++) { active_voices = MicroDexed[i]->getNumNotesPlaying(); } // check for value changes if (soften_volume.steps > 0) { // soften volume value soften_volume.steps--; set_volume(configuration.vol + soften_volume.diff, configuration.pan); #ifdef DEBUG Serial.print(F("Volume: ")); Serial.print(configuration.vol, 5); Serial.print(F(" Volume step: ")); Serial.print(soften_volume.steps); Serial.print(F(" Volume diff: ")); Serial.println(soften_volume.diff, 5); #endif } if (soften_filter_res.steps > 0) { // soften filter resonance value soften_filter_res.steps--; for (uint8_t i = 0; i < NUM_DEXED; i++) { MicroDexed[i]->fx.Reso = MicroDexed[i]->fx.Reso + soften_filter_res.diff; #ifdef DEBUG Serial.print(F("Filter-Resonance: ")); Serial.print(MicroDexed[i]->fx.Reso, 5); Serial.print(F(" Filter-Resonance step: ")); Serial.print(soften_filter_res.steps); Serial.print(F(" Filter-Resonance diff: ")); Serial.println(soften_filter_res.diff, 5); #endif } } if (soften_filter_cut.steps > 0) { // soften filter cutoff value soften_filter_cut.steps--; for (uint8_t i = 0; i < NUM_DEXED; i++) { MicroDexed[i]->fx.Cutoff = MicroDexed[i]->fx.Cutoff + soften_filter_cut.diff; #ifdef DEBUG Serial.print(F("Filter-Cutoff: ")); Serial.print(MicroDexed[i]->fx.Cutoff, 5); Serial.print(F(" Filter-Cutoff step: ")); Serial.print(soften_filter_cut.steps); Serial.print(F(" Filter-Cutoff diff: ")); Serial.println(soften_filter_cut.diff, 5); #endif } } } #if defined (DEBUG) && defined (SHOW_CPU_LOAD_MSEC) if (cpu_mem_millis >= SHOW_CPU_LOAD_MSEC) { cpu_mem_millis -= SHOW_CPU_LOAD_MSEC; show_cpu_and_mem_usage(); } #endif } } /****************************************************************************** MIDI MESSAGE HANDLER ******************************************************************************/ void handleNoteOn(byte inChannel, byte inNumber, byte inVelocity) { if (checkMidiChannel(inChannel)) { MicroDexed[0]->keydown(inNumber, inVelocity); } } void handleNoteOff(byte inChannel, byte inNumber, byte inVelocity) { if (checkMidiChannel(inChannel)) { MicroDexed[0]->keyup(inNumber); } } void handleControlChange(byte inChannel, byte inCtrl, byte inValue) { if (checkMidiChannel(inChannel)) { #ifdef DEBUG Serial.print(F("CC#")); Serial.print(inCtrl, DEC); Serial.print(F(":")); Serial.println(inValue, DEC); #endif switch (inCtrl) { case 0: if (inValue < MAX_BANKS) { configuration.bank = inValue; } break; case 1: MicroDexed[0]->controllers.modwheel_cc = inValue; MicroDexed[0]->controllers.refresh(); break; case 2: MicroDexed[0]->controllers.breath_cc = inValue; MicroDexed[0]->controllers.refresh(); break; case 4: MicroDexed[0]->controllers.foot_cc = inValue; MicroDexed[0]->controllers.refresh(); break; case 7: // Volume configuration.vol = float(inValue) / 0x7f; set_volume(configuration.vol, configuration.pan); break; case 10: // Pan configuration.pan = float(inValue) / 128; set_volume(configuration.vol, configuration.pan); break; case 32: // BankSelect LSB configuration.bank = inValue; break; case 64: MicroDexed[0]->setSustain(inValue > 63); if (!MicroDexed[0]->getSustain()) { for (uint8_t note = 0; note < MicroDexed[0]->getMaxNotes(); note++) { if (MicroDexed[0]->voices[note].sustained && !MicroDexed[0]->voices[note].keydown) { MicroDexed[0]->voices[note].dx7_note->keyup(); MicroDexed[0]->voices[note].sustained = false; } } } break; case 103: // CC 103: filter resonance effect_filter_resonance = map(inValue, 0, 127, 0, ENC_FILTER_RES_STEPS); MicroDexed[0]->fx.Reso = 1.0 - float(effect_filter_resonance) / ENC_FILTER_RES_STEPS; break; case 104: // CC 104: filter cutoff effect_filter_cutoff = map(inValue, 0, 127, 0, ENC_FILTER_CUT_STEPS); MicroDexed[0]->fx.Cutoff = 1.0 - float(effect_filter_cutoff) / ENC_FILTER_CUT_STEPS; break; case 105: // CC 105: delay time effect_delay_time = map(inValue, 0, 127, 0, ENC_DELAY_TIME_STEPS); ////delay.delay(0, mapfloat(effect_delay_time, 0, ENC_DELAY_TIME_STEPS, 0.0, DELAY_MAX_TIME)); break; case 106: // CC 106: delay feedback effect_delay_feedback = map(inValue, 0, 127, 0, ENC_DELAY_FB_STEPS); ////delay_mixer_r.gain(1, mapfloat(float(effect_delay_feedback), 0, ENC_DELAY_FB_STEPS, 0.0, 1.0)); break; case 107: // CC 107: delay volume effect_delay_volume = map(inValue, 0, 127, 0, ENC_DELAY_VOLUME_STEPS); ////delay_mixer_l.gain(1, mapfloat(effect_delay_volume, 0, ENC_DELAY_VOLUME_STEPS, 0.0, 1.0)); // delay tap1 signal (with added feedback) break; case 120: MicroDexed[0]->panic(); break; case 121: MicroDexed[0]->resetControllers(); break; case 123: MicroDexed[0]->notesOff(); break; case 126: MicroDexed[0]->setMonoMode(true); break; case 127: MicroDexed[0]->setMonoMode(false); break; } } } void handleAfterTouch(byte inChannel, byte inPressure) { MicroDexed[0]->controllers.aftertouch_cc = inPressure; MicroDexed[0]->controllers.refresh(); } void handlePitchBend(byte inChannel, int inPitch) { MicroDexed[0]->controllers.values_[kControllerPitch] = inPitch + 0x2000; // -8192 to +8191 --> 0 to 16383 } void handleProgramChange(byte inChannel, byte inProgram) { if (inProgram < MAX_VOICES) { #ifdef DISPLAY_LCD_SPI change_disp_sd(false); #endif load_sysex(configuration.bank, inProgram); #ifdef DISPLAY_LCD_SPI change_disp_sd(true); #endif } } void handleSystemExclusive(byte * sysex, uint len) { /* SYSEX MESSAGE: Parameter Change ------------------------------- bits hex description 11110000 F0 Status byte - start sysex 0iiiiiii 43 ID # (i=67; Yamaha) 0sssnnnn 10 Sub-status (s=1) & channel number (n=0; ch 1) 0gggggpp ** parameter group # (g=0; voice, g=2; function) 0ppppppp ** parameter # (these are listed in next section) Note that voice parameter #'s can go over 128 so the pp bits in the group byte are either 00 for par# 0-127 or 01 for par# 128-155. In the latter case you add 128 to the 0ppppppp byte to compute par#. 0ddddddd ** data byte 11110111 F7 Status - end sysex */ #ifdef DEBUG Serial.print(F("SYSEX-Data[")); Serial.print(len, DEC); Serial.print(F("]")); for (uint8_t i = 0; i < len; i++) { Serial.print(F(" ")); Serial.print(sysex[i], DEC); } Serial.println(); #endif if (!checkMidiChannel((sysex[2] & 0x0f) + 1 )) { #ifdef DEBUG Serial.println(F("SYSEX-MIDI-Channel mismatch")); #endif return; } if (sysex[1] != 0x43) // check for Yamaha sysex { #ifdef DEBUG Serial.println(F("E: SysEx vendor not Yamaha.")); #endif return; } #ifdef DEBUG Serial.print(F("Substatus: [")); Serial.print((sysex[2] & 0x70) >> 4); Serial.println(F("]")); #endif // parse parameter change if (len == 7) { if (((sysex[3] & 0x7c) >> 2) != 0 && ((sysex[3] & 0x7c) >> 2) != 2) { #ifdef DEBUG Serial.println(F("E: Not a SysEx parameter or function parameter change.")); #endif return; } if (sysex[6] != 0xf7) { #ifdef DEBUG Serial.println(F("E: SysEx end status byte not detected.")); #endif return; } sysex[4] &= 0x7f; sysex[5] &= 0x7f; uint8_t data_index; if (((sysex[3] & 0x7c) >> 2) == 0) { MicroDexed[0]->notesOff(); MicroDexed[0]->data[sysex[4] + ((sysex[3] & 0x03) * 128)] = sysex[5]; // set parameter MicroDexed[0]->doRefreshVoice(); data_index = sysex[4] + ((sysex[3] & 0x03) * 128); } else { MicroDexed[0]->data[DEXED_GLOBAL_PARAMETER_OFFSET - 63 + sysex[4]] = sysex[5]; // set function parameter MicroDexed[0]->controllers.values_[kControllerPitchRange] = MicroDexed[0]->data[DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_PITCHBEND_RANGE]; MicroDexed[0]->controllers.values_[kControllerPitchStep] = MicroDexed[0]->data[DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_PITCHBEND_STEP]; MicroDexed[0]->controllers.wheel.setRange(MicroDexed[0]->data[DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_MODWHEEL_RANGE]); MicroDexed[0]->controllers.wheel.setTarget(MicroDexed[0]->data[DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_MODWHEEL_ASSIGN]); MicroDexed[0]->controllers.foot.setRange(MicroDexed[0]->data[DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_FOOTCTRL_RANGE]); MicroDexed[0]->controllers.foot.setTarget(MicroDexed[0]->data[DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_FOOTCTRL_ASSIGN]); MicroDexed[0]->controllers.breath.setRange(MicroDexed[0]->data[DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_BREATHCTRL_RANGE]); MicroDexed[0]->controllers.breath.setTarget(MicroDexed[0]->data[DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_BREATHCTRL_ASSIGN]); MicroDexed[0]->controllers.at.setRange(MicroDexed[0]->data[DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_AT_RANGE]); MicroDexed[0]->controllers.at.setTarget(MicroDexed[0]->data[DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_AT_ASSIGN]); MicroDexed[0]->controllers.masterTune = (MicroDexed[0]->data[DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_MASTER_TUNE] * 0x4000 << 11) * (1.0 / 12); MicroDexed[0]->controllers.refresh(); data_index = DEXED_GLOBAL_PARAMETER_OFFSET - 63 + sysex[4]; } #ifdef DEBUG Serial.print(F("SysEx")); if (((sysex[3] & 0x7c) >> 2) == 0) Serial.print(F(" function")); Serial.print(F(" parameter ")); Serial.print(sysex[4], DEC); Serial.print(F(" = ")); Serial.print(sysex[5], DEC); Serial.print(F(", data_index = ")); Serial.println(data_index, DEC); #endif } else if (len == 163) { int32_t bulk_checksum_calc = 0; int8_t bulk_checksum = sysex[161]; // 1 Voice bulk upload #ifdef DEBUG Serial.println(F("One Voice bulk upload")); #endif if (sysex[162] != 0xf7) { #ifdef DEBUG Serial.println(F("E: Found no SysEx end marker.")); #endif return; } if ((sysex[3] & 0x7f) != 0) { #ifdef DEBUG Serial.println(F("E: Not a SysEx voice bulk upload.")); #endif return; } if (((sysex[4] << 7) | sysex[5]) != 0x9b) { #ifdef DEBUG Serial.println(F("E: Wrong length for SysEx voice bulk upload (not 155).")); #endif return; } // checksum calculation for (uint8_t i = 0; i < 155 ; i++) { bulk_checksum_calc -= sysex[i + 6]; } bulk_checksum_calc &= 0x7f; if (bulk_checksum_calc != bulk_checksum) { #ifdef DEBUG Serial.print(F("E: Checksum error for one voice [0x")); Serial.print(bulk_checksum, HEX); Serial.print(F("/0x")); Serial.print(bulk_checksum_calc, HEX); Serial.println(F("]")); #endif return; } // load sysex-data into voice memory MicroDexed[0]->loadVoiceParameters(&sysex[6]); //MicroDexed[0]->initGlobalParameters(); // manipulate UI names and numbers strncpy(voice_name, (char *)&sysex[151], sizeof(voice_name) - 1); Serial.print(F("Got voice [")); Serial.print(voice_name); Serial.println(F("].")); } #ifdef DEBUG else Serial.println(F("E: SysEx parameter length wrong.")); #endif } void handleTimeCodeQuarterFrame(byte data) { ; } void handleAfterTouchPoly(byte inChannel, byte inNumber, byte inVelocity) { ; } void handleSongSelect(byte inSong) { ; } void handleTuneRequest(void) { ; } void handleClock(void) { midi_timing_counter++; if (midi_timing_counter % 24 == 0) { midi_timing_quarter = midi_timing_timestep; midi_timing_counter = 0; midi_timing_timestep = 0; // Adjust delay control here #ifdef DEBUG Serial.print(F("MIDI Clock: ")); Serial.print(60000 / midi_timing_quarter, DEC); Serial.print(F("bpm (")); Serial.print(midi_timing_quarter, DEC); Serial.println(F("ms per quarter)")); #endif } } void handleStart(void) { ; } void handleContinue(void) { ; } void handleStop(void) { ; } void handleActiveSensing(void) { ; } void handleSystemReset(void) { #ifdef DEBUG Serial.println(F("MIDI SYSEX RESET")); #endif MicroDexed[0]->notesOff(); MicroDexed[0]->panic(); MicroDexed[0]->resetControllers(); } /****************************************************************************** MIDI HELPER ******************************************************************************/ bool checkMidiChannel(byte inChannel) { // check for MIDI channel if (configuration.midi_channel == MIDI_CHANNEL_OMNI) { return (true); } else if (inChannel != configuration.midi_channel) { #ifdef DEBUG Serial.print(F("Ignoring MIDI data on channel ")); Serial.print(inChannel); Serial.print(F("(listening on ")); Serial.print(configuration.midi_channel); Serial.println(F(")")); #endif return (false); } return (true); } /****************************************************************************** VOLUME HELPER ******************************************************************************/ void set_volume(float v, float p) { configuration.vol = v; configuration.pan = p; MicroDexed[0]->fx.Gain = v; uint16_t tmp = v * 1023.0 + 0.5; float tmp2 = configuration.pan; float tmp3 = (float)(tmp * (tmp + 2)) / (float)(1 << 20); #ifdef SHOW_DEBUG Serial.print(F("Setting volume: VOL=")); Serial.print(value, DEC); Serial.print(F("[")); Serial.print(tmp3, 3); Serial.print(F("] PAN=")); Serial.print(configuration.pan, DEC); Serial.print(F("[")); Serial.print(tmp2, 3); Serial.print(F("] ")); Serial.print(tmp3 * sinf(tmp2 * PI / 2), 3); Serial.print(F("/")); Serial.println(tmp3 * cosf(tmp2 * PI / 2), 3); #endif // float v = (float)(a * (a + 2))/(float)(1 << 20); // (pseudo-) logarithmic curve for volume control // http://files.csound-tutorial.net/floss_manual/Release03/Cs_FM_03_ScrapBook/b-panning-and-spatialization.html volume_r.gain(tmp3 * sinf(tmp2 * PI / 2)); volume_l.gain(tmp3 * cosf(tmp2 * PI / 2)); if (configuration.mono == 2) volume_l.gain(0.0); else if (configuration.mono == 3) volume_r.gain(0.0); } // https://www.dr-lex.be/info-stuff/volumecontrols.html#table1 inline float logvol(float x) { return (0.001 * expf(6.908 * x)); } /****************************************************************************** EEPROM HELPER ******************************************************************************/ void initial_values_from_eeprom(void) { uint32_t checksum; config_t tmp_conf; EEPROM_readAnything(EEPROM_START_ADDRESS, tmp_conf); checksum = crc32((byte*)&tmp_conf + 4, sizeof(tmp_conf) - 4); #ifdef DEBUG Serial.print(F("EEPROM checksum: 0x")); Serial.print(tmp_conf.checksum, HEX); Serial.print(F(" / 0x")); Serial.print(checksum, HEX); #endif if (checksum != tmp_conf.checksum) { #ifdef DEBUG Serial.print(F(" - mismatch -> initializing EEPROM!")); #endif eeprom_update(); } else { EEPROM_readAnything(EEPROM_START_ADDRESS, configuration); Serial.print(F(" - OK, loading!")); } #ifdef DEBUG Serial.println(); #endif if (configuration.vol > 1.0) configuration.vol = 1.0; else if (configuration.vol < 0.0) configuration.vol = 0.0; } void eeprom_write(void) { autostore = 0; eeprom_update_flag = true; } void eeprom_update(void) { eeprom_update_flag = false; configuration.checksum = crc32((byte*)&configuration + 4, sizeof(configuration) - 4); EEPROM_writeAnything(EEPROM_START_ADDRESS, configuration); Serial.println(F("Updating EEPROM with configuration data")); } uint32_t crc32(byte * calc_start, uint16_t calc_bytes) // base code from https://www.arduino.cc/en/Tutorial/EEPROMCrc { const uint32_t crc_table[16] = { 0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac, 0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c, 0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c, 0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c }; uint32_t crc = ~0L; for (byte* index = calc_start ; index < (calc_start + calc_bytes) ; ++index) { crc = crc_table[(crc ^ *index) & 0x0f] ^ (crc >> 4); crc = crc_table[(crc ^ (*index >> 4)) & 0x0f] ^ (crc >> 4); crc = ~crc; } return (crc); } /****************************************************************************** DEBUG HELPER ******************************************************************************/ #if defined (DEBUG) && defined (SHOW_CPU_LOAD_MSEC) void show_cpu_and_mem_usage(void) { Serial.print(F("CPU: ")); Serial.print(AudioProcessorUsage(), 2); Serial.print(F("% CPU MAX: ")); Serial.print(AudioProcessorUsageMax(), 2); Serial.print(F("% MEM: ")); Serial.print(AudioMemoryUsage(), DEC); Serial.print(F(" MEM MAX: ")); Serial.print(AudioMemoryUsageMax(), DEC); Serial.print(F(" RENDER_TIME_MAX: ")); Serial.print(render_time_max, DEC); Serial.print(F(" XRUN: ")); Serial.print(xrun, DEC); Serial.print(F(" OVERLOAD: ")); Serial.print(overload, DEC); Serial.print(F(" PEAK: ")); Serial.print(peak, DEC); Serial.print(F(" BLOCKSIZE: ")); Serial.print(AUDIO_BLOCK_SAMPLES, DEC); Serial.print(F(" ACTIVE_VOICES: ")); Serial.print(active_voices, DEC); Serial.println(); AudioProcessorUsageMaxReset(); AudioMemoryUsageMaxReset(); render_time_max = 0; } #endif #ifdef DEBUG void show_patch(void) { uint8_t i; char voicename[VOICE_NAME_LEN]; memset(voicename, 0, sizeof(voicename)); for (i = 0; i < 6; i++) { Serial.print(F("OP")); Serial.print(6 - i, DEC); Serial.println(F(": ")); Serial.println(F("R1 | R2 | R3 | R4 | L1 | L2 | L3 | L4 LEV_SCL_BRK_PT | SCL_LEFT_DEPTH | SCL_RGHT_DEPTH")); Serial.print(MicroDexed[0]->data[(i * 21) + DEXED_OP_EG_R1], DEC); Serial.print(F(" ")); Serial.print(MicroDexed[0]->data[(i * 21) + DEXED_OP_EG_R2], DEC); Serial.print(F(" ")); Serial.print(MicroDexed[0]->data[(i * 21) + DEXED_OP_EG_R3], DEC); Serial.print(F(" ")); Serial.print(MicroDexed[0]->data[(i * 21) + DEXED_OP_EG_R4], DEC); Serial.print(F(" ")); Serial.print(MicroDexed[0]->data[(i * 21) + DEXED_OP_EG_L1], DEC); Serial.print(F(" ")); Serial.print(MicroDexed[0]->data[(i * 21) + DEXED_OP_EG_L2], DEC); Serial.print(F(" ")); Serial.print(MicroDexed[0]->data[(i * 21) + DEXED_OP_EG_L3], DEC); Serial.print(F(" ")); Serial.print(MicroDexed[0]->data[(i * 21) + DEXED_OP_EG_L4], DEC); Serial.print(F(" ")); Serial.print(MicroDexed[0]->data[(i * 21) + DEXED_OP_LEV_SCL_BRK_PT], DEC); Serial.print(F(" ")); Serial.print(MicroDexed[0]->data[(i * 21) + DEXED_OP_SCL_LEFT_DEPTH], DEC); Serial.print(F(" ")); Serial.println(MicroDexed[0]->data[(i * 21) + DEXED_OP_SCL_RGHT_DEPTH], DEC); Serial.println(F("SCL_L_CURVE | SCL_R_CURVE | RT_SCALE | AMS | KVS | OUT_LEV | OP_MOD | FRQ_C | FRQ_F | DETUNE")); Serial.print(F(" ")); Serial.print(MicroDexed[0]->data[(i * 21) + DEXED_OP_SCL_LEFT_CURVE], DEC); Serial.print(F(" ")); Serial.print(MicroDexed[0]->data[(i * 21) + DEXED_OP_SCL_RGHT_CURVE], DEC); Serial.print(F(" ")); Serial.print(MicroDexed[0]->data[(i * 21) + DEXED_OP_OSC_RATE_SCALE], DEC); Serial.print(F(" ")); Serial.print(MicroDexed[0]->data[(i * 21) + DEXED_OP_AMP_MOD_SENS], DEC); Serial.print(F(" ")); Serial.print(MicroDexed[0]->data[(i * 21) + DEXED_OP_KEY_VEL_SENS], DEC); Serial.print(F(" ")); Serial.print(MicroDexed[0]->data[(i * 21) + DEXED_OP_OUTPUT_LEV], DEC); Serial.print(F(" ")); Serial.print(MicroDexed[0]->data[(i * 21) + DEXED_OP_OSC_MODE], DEC); Serial.print(F(" ")); Serial.print(MicroDexed[0]->data[(i * 21) + DEXED_OP_FREQ_COARSE], DEC); Serial.print(F(" ")); Serial.print(MicroDexed[0]->data[(i * 21) + DEXED_OP_FREQ_FINE], DEC); Serial.print(F(" ")); Serial.println(MicroDexed[0]->data[(i * 21) + DEXED_OP_OSC_DETUNE], DEC); } Serial.println(F("PR1 | PR2 | PR3 | PR4 | PL1 | PL2 | PL3 | PL4")); Serial.print(F(" ")); for (i = 0; i < 8; i++) { Serial.print(MicroDexed[0]->data[DEXED_VOICE_OFFSET + i], DEC); Serial.print(F(" ")); } Serial.println(); Serial.print(F("ALG: ")); Serial.println(MicroDexed[0]->data[DEXED_VOICE_OFFSET + DEXED_ALGORITHM], DEC); Serial.print(F("FB: ")); Serial.println(MicroDexed[0]->data[DEXED_VOICE_OFFSET + DEXED_FEEDBACK], DEC); Serial.print(F("OKS: ")); Serial.println(MicroDexed[0]->data[DEXED_VOICE_OFFSET + DEXED_OSC_KEY_SYNC], DEC); Serial.print(F("LFO SPD: ")); Serial.println(MicroDexed[0]->data[DEXED_VOICE_OFFSET + DEXED_LFO_SPEED], DEC); Serial.print(F("LFO_DLY: ")); Serial.println(MicroDexed[0]->data[DEXED_VOICE_OFFSET + DEXED_LFO_DELAY], DEC); Serial.print(F("LFO PMD: ")); Serial.println(MicroDexed[0]->data[DEXED_VOICE_OFFSET + DEXED_LFO_PITCH_MOD_DEP], DEC); Serial.print(F("LFO_AMD: ")); Serial.println(MicroDexed[0]->data[DEXED_VOICE_OFFSET + DEXED_LFO_AMP_MOD_DEP], DEC); Serial.print(F("LFO_SYNC: ")); Serial.println(MicroDexed[0]->data[DEXED_VOICE_OFFSET + DEXED_LFO_SYNC], DEC); Serial.print(F("LFO_WAVEFRM: ")); Serial.println(MicroDexed[0]->data[DEXED_VOICE_OFFSET + DEXED_LFO_WAVE], DEC); Serial.print(F("LFO_PMS: ")); Serial.println(MicroDexed[0]->data[DEXED_VOICE_OFFSET + DEXED_LFO_PITCH_MOD_SENS], DEC); Serial.print(F("TRNSPSE: ")); Serial.println(MicroDexed[0]->data[DEXED_VOICE_OFFSET + DEXED_TRANSPOSE], DEC); Serial.print(F("NAME: ")); strncpy(voicename, (char *)&MicroDexed[0]->data[DEXED_VOICE_OFFSET + DEXED_NAME], sizeof(voicename) - 1); Serial.print(F("[")); Serial.print(voicename); Serial.println(F("]")); for (i = DEXED_GLOBAL_PARAMETER_OFFSET; i <= DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_MAX_NOTES; i++) { Serial.print(i, DEC); Serial.print(F(": ")); Serial.println(MicroDexed[0]->data[i]); } Serial.println(); } #endif