// // MicroDexed // // A port of the Dexed sound engine (https://github.com/asb2m10/dexed) for the Teensy-3.5/3.6 with audio shield // (c)2018 H. Wirtz // #include #include #include #include #include #include "dexed.h" #define AUDIO_MEM 2 #define SAMPLE_RATE 44100 //#define INIT_AUDIO_QUEUE 1 //#define SHOW_DEXED_TIMING 1 #define SHOW_XRUN 1 #define SHOW_CPU_LOAD_MSEC 5000 #define MAX_NOTES 10 #define TEST_MIDI 1 #define TEST_NOTE 40 #define TEST_VEL 60 //#define ADD_EFFECT_CHORUS 1 // Use these with the Teensy Audio Shield #define SDCARD_CS_PIN 10 #define SDCARD_MOSI_PIN 7 #define SDCARD_SCK_PIN 14 // Use these with the Teensy 3.5 & 3.6 SD card //#define SDCARD_CS_PIN BUILTIN_SDCARD //#define SDCARD_MOSI_PIN 11 // not actually used //#define SDCARD_SCK_PIN 13 // not actually used // GUItool: begin automatically generated code AudioPlayQueue queue1; //xy=84,294 AudioOutputI2S i2s1; //xy=961,276 #ifdef ADD_EFFECT_CHORUS AudioEffectChorus chorus1; //xy=328,295 AudioConnection patchCord1(queue1, chorus1); AudioConnection patchCord2(chorus1, 0, i2s1, 0); AudioConnection patchCord3(chorus1, 0, i2s1, 1); #else AudioConnection patchCord2(queue1, 0, i2s1, 0); AudioConnection patchCord3(queue1, 0, i2s1, 1); #endif AudioControlSGTL5000 sgtl5000_1; //xy=507,403 // GUItool: end automatically generated code MIDI_CREATE_INSTANCE(HardwareSerial, Serial1, MIDI); Dexed* dexed = new Dexed(SAMPLE_RATE); IntervalTimer sched; Sd2Card card; SdVolume volume; #ifdef ADD_EFFECT_CHORUS // Number of samples in each delay line #define CHORUS_DELAY_LENGTH (16*AUDIO_BLOCK_SAMPLES) // Allocate the delay lines for left and right channels short delayline[CHORUS_DELAY_LENGTH]; #endif void setup() { //while (!Serial) ; // wait for Arduino Serial Monitor Serial.begin(115200); Serial.println(F("MicroDexed based on https://github.com/asb2m10/dexed")); Serial.println(F("(c)2018 H. Wirtz")); Serial.println(F("setup start")); SPI.setMOSI(SDCARD_MOSI_PIN); SPI.setSCK(SDCARD_SCK_PIN); if (card.init(SPI_FULL_SPEED, SDCARD_CS_PIN)) { Serial.println(F("SD card found.")); } else { Serial.println(F("No SD card found.")); } switch (card.type()) { case SD_CARD_TYPE_SD1: case SD_CARD_TYPE_SD2: Serial.println(F("Card type is SD")); break; case SD_CARD_TYPE_SDHC: Serial.println(F("Card type is SDHC")); break; default: Serial.println(F("Card is an unknown type (maybe SDXC?)")); } if (!volume.init(card)) { Serial.println(F("Unable to access the filesystem")); } MIDI.begin(MIDI_CHANNEL_OMNI); // Audio connections require memory to work. For more // detailed information, see the MemoryAndCpuUsage example AudioMemory(AUDIO_MEM); sgtl5000_1.enable(); sgtl5000_1.volume(0.2); // Initialize processor and memory measurements #ifdef SHOW_CPU_LOAD_MSEC AudioProcessorUsageMaxReset(); AudioMemoryUsageMaxReset(); #endif #ifdef INIT_AUDIO_QUEUE // initial fill audio buffer with empty data while (queue1.available()) { int16_t* audio_buffer = queue1.getBuffer(); if (audio_buffer != NULL) { memset(audio_buffer, 0, sizeof(int16_t)*AUDIO_BLOCK_SAMPLES); queue1.playBuffer(); } } #endif dexed->activate(); dexed->setMaxNotes(MAX_NOTES); #ifdef ADD_EFFECT_CHORUS chorus1.begin(delayline, CHORUS_DELAY_LENGTH, 8); #endif #ifdef TEST_MIDI queue_midi_event(0x90, TEST_NOTE, TEST_VEL); // 1 queue_midi_event(0x90, TEST_NOTE + 5, TEST_VEL); // 2 queue_midi_event(0x90, TEST_NOTE + 8, TEST_VEL); // 3 queue_midi_event(0x90, TEST_NOTE + 12, TEST_VEL); // 4 queue_midi_event(0x90, TEST_NOTE + 17, TEST_VEL); // 5 queue_midi_event(0x90, TEST_NOTE + 20, TEST_VEL); // 6 queue_midi_event(0x90, TEST_NOTE + 24, TEST_VEL); // 7 queue_midi_event(0x90, TEST_NOTE + 29, TEST_VEL); // 8 queue_midi_event(0x90, TEST_NOTE + 32, TEST_VEL); // 9 queue_midi_event(0x90, TEST_NOTE + 37, TEST_VEL); // 10 queue_midi_event(0x90, TEST_NOTE + 40, TEST_VEL); // 11 queue_midi_event(0x90, TEST_NOTE + 44, TEST_VEL); // 12 queue_midi_event(0x90, TEST_NOTE + 49, TEST_VEL); // 13 queue_midi_event(0x90, TEST_NOTE + 52, TEST_VEL); // 14 queue_midi_event(0x90, TEST_NOTE + 57, TEST_VEL); // 15 queue_midi_event(0x90, TEST_NOTE + 60, TEST_VEL); // 16 #endif #ifdef SHOW_CPU_LOAD_MSEC sched.begin(cpu_and_mem_usage, SHOW_CPU_LOAD_MSEC * 1000); #endif Serial.print(F("AUDIO_BLOCK_SAMPLES=")); Serial.println(AUDIO_BLOCK_SAMPLES); Serial.println(F("setup end")); cpu_and_mem_usage(); } void loop() { int16_t* audio_buffer; // pointer to 128 * int16_t bool break_for_calculation; while (42 == 42) // DON'T PANIC! { audio_buffer = queue1.getBuffer(); if (audio_buffer == NULL) { Serial.println(F("audio_buffer allocation problems!")); } while (MIDI.read()) { break_for_calculation = dexed->ProcessMidiMessage(MIDI.getType(), MIDI.getData1(), MIDI.getData2()); if (break_for_calculation == true) break; } #if defined(SHOW_DEXED_TIMING) || defined(SHOW_XRUN) elapsedMicros t1; #endif dexed->GetSamples(AUDIO_BLOCK_SAMPLES, audio_buffer); #ifdef SHOW_XRUN uint32_t t2 = t1; if (t2 > 2900) Serial.println(F("xrun")); #endif #ifdef SHOW_DEXED_TIMING Serial.println(t1, DEC); #endif queue1.playBuffer(); } } bool queue_midi_event(uint8_t type, uint8_t data1, uint8_t data2) { return (dexed->ProcessMidiMessage(type, data1, data2)); } #ifdef SHOW_CPU_LOAD_MSEC void cpu_and_mem_usage(void) { Serial.print(F("CPU:")); Serial.print(AudioProcessorUsage(), DEC); Serial.print(F(" CPU MAX:")); Serial.print(AudioProcessorUsageMax(), DEC); Serial.print(F(" MEM:")); Serial.print(AudioMemoryUsage(), DEC); Serial.print(F(" MEM MAX:")); Serial.print(AudioMemoryUsageMax(), DEC); Serial.println(); AudioProcessorUsageMaxReset(); AudioMemoryUsageMaxReset(); } #endif void spaces(int num) { for (int i = 0; i < num; i++) { Serial.print(" "); } }