/* MicroDexed MicroDexed is a port of the Dexed sound engine (https://github.com/asb2m10/dexed) for the Teensy-3.5/3.6 with audio shield. Dexed ist heavily based on https://github.com/google/music-synthesizer-for-android (c)2018-2020 H. Wirtz This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include #include "config.h" #include #include #include #include #include #include #include "midi_devices.hpp" #include "dexed.h" #include "dexed_sd.h" #include "effect_modulated_delay.h" #include "effect_stereo_mono.h" #include "effect_mono_stereo.h" #include "PluginFx.h" #include "UI.hpp" #include "source_microdexed.h" // Audio engines AudioSourceMicroDexed* MicroDexed[NUM_DEXED]; AudioAmplifier* dexed_level[NUM_DEXED]; #if defined(USE_FX) AudioSynthWaveform* chorus_modulator[NUM_DEXED]; #if MOD_FILTER_OUTPUT != MOD_NO_FILTER_OUTPUT AudioFilterBiquad* modchorus_filter[NUM_DEXED]; #endif AudioEffectModulatedDelay* modchorus[NUM_DEXED]; AudioMixer4* chorus_mixer[NUM_DEXED]; AudioMixer4* delay_fb_mixer[NUM_DEXED]; AudioEffectDelay* delay_fx[NUM_DEXED]; AudioMixer4* delay_mixer[NUM_DEXED]; #endif AudioEffectMonoStereo* mono2stereo[NUM_DEXED]; AudioMixer4 microdexed_peak_mixer; AudioAnalyzePeak microdexed_peak; #if defined(USE_FX) AudioMixer4 reverb_mixer_r; AudioMixer4 reverb_mixer_l; AudioEffectFreeverb freeverb_r; AudioEffectFreeverb freeverb_l; #endif AudioMixer4 master_mixer_r; AudioMixer4 master_mixer_l; AudioAmplifier volume_r; AudioAmplifier volume_l; AudioEffectStereoMono stereo2mono; AudioAnalyzePeak master_peak_r; AudioAnalyzePeak master_peak_l; // Audio chain tail #if defined(USE_FX) AudioConnection patchCord0(reverb_mixer_r, freeverb_r); AudioConnection patchCord1(reverb_mixer_l, freeverb_l); AudioConnection patchCord2(freeverb_r, 0, master_mixer_r, 3); AudioConnection patchCord3(freeverb_l, 0, master_mixer_l, 3); #endif AudioConnection patchCord4(master_mixer_r, volume_r); AudioConnection patchCord5(master_mixer_l, volume_l); AudioConnection patchCord6(volume_r, 0, stereo2mono, 0); AudioConnection patchCord7(volume_l, 0, stereo2mono, 1); AudioConnection patchCord8(stereo2mono, 0, master_peak_r, 0); AudioConnection patchCord9(stereo2mono, 0, master_peak_l, 0); // Outputs #ifdef AUDIO_DEVICE_USB AudioOutputUSB usb1; AudioConnection patchCord10(stereo2mono, 0, usb1, 0); AudioConnection patchCord11(stereo2mono, 1, usb1, 1); #endif #if defined(TEENSY_AUDIO_BOARD) AudioOutputI2S i2s1; AudioConnection patchCord12(stereo2mono, 0, i2s1, 0); AudioConnection patchCord13(stereo2mono, 1, i2s1, 1); AudioControlSGTL5000 sgtl5000_1; #elif defined (I2S_AUDIO_ONLY) AudioOutputI2S i2s1; AudioConnection patchCord12(stereo2mono, 0, i2s1, 0); AudioConnection patchCord13(stereo2mono, 1, i2s1, 1); #elif defined(TGA_AUDIO_BOARD) AudioOutputI2S i2s1; AudioConnection patchCord12(stereo2mono, 0, i2s1, 0); AudioConnection patchCord13(stereo2mono, 1, i2s1, 1); AudioControlWM8731master wm8731_1; #elif defined(PT8211_AUDIO) AudioOutputPT8211 pt8211_1; AudioConnection patchCord12(stereo2mono, 0, pt8211_1, 0); AudioConnection patchCord13(stereo2mono, 1, pt8211_1, 1); #elif defined(TEENSY_DAC_SYMMETRIC) AudioOutputAnalogStereo dacOut; AudioMixer4 invMixer; AudioConnection patchCord12(stereo2mono, 0, dacOut , 0); AudioConnection patchCord13(stereo2mono, 1, invMixer, 0); AudioConnection patchCord14(invMixer, 0, dacOut , 1); #else AudioOutputAnalogStereo dacOut; AudioConnection patchCord12(stereo2mono, 0, dacOut, 0); AudioConnection patchCord13(stereo2mono, 1, dacOut, 1); #endif // // Dynamic patching of MicroDexed objects // uint8_t nDynamic = 0; #if defined(USE_FX) && MOD_FILTER_OUTPUT != MOD_NO_FILTER_OUTPUT AudioConnection * dynamicConnections[NUM_DEXED * 17]; #elif defined(USE_FX) && MOD_FILTER_OUTPUT == MOD_NO_FILTER_OUTPUT AudioConnection * dynamicConnections[NUM_DEXED * 16]; #else AudioConnection * dynamicConnections[NUM_DEXED * 5]; #endif void create_audio_engine_chain(uint8_t instance_id) { MicroDexed[instance_id] = new AudioSourceMicroDexed(SAMPLE_RATE); dexed_level[instance_id] = new AudioAmplifier(); mono2stereo[instance_id] = new AudioEffectMonoStereo(); #if defined(USE_FX) chorus_modulator[instance_id] = new AudioSynthWaveform(); #if MOD_FILTER_OUTPUT != MOD_NO_FILTER_OUTPUT modchorus_filter[instance_id] = new AudioFilterBiquad(); #endif modchorus[instance_id] = new AudioEffectModulatedDelay(); chorus_mixer[instance_id] = new AudioMixer4(); delay_fb_mixer[instance_id] = new AudioMixer4(); delay_fx[instance_id] = new AudioEffectDelay(); delay_mixer[instance_id] = new AudioMixer4(); #endif dynamicConnections[nDynamic++] = new AudioConnection(*MicroDexed[instance_id], 0, microdexed_peak_mixer, instance_id); dynamicConnections[nDynamic++] = new AudioConnection(*MicroDexed[instance_id], 0, *dexed_level[instance_id], 0); #if defined(USE_FX) dynamicConnections[nDynamic++] = new AudioConnection(*dexed_level[instance_id], 0, *chorus_mixer[instance_id], 0); dynamicConnections[nDynamic++] = new AudioConnection(*dexed_level[instance_id], 0, *modchorus[instance_id], 0); #if MOD_FILTER_OUTPUT != MOD_NO_FILTER_OUTPUT dynamicConnections[nDynamic++] = new AudioConnection(*chorus_modulator[instance_id], 0, *modchorus_filter[instance_id], 0); dynamicConnections[nDynamic++] = new AudioConnection(*modchorus_filter[instance_id], 0, *modchorus[instance_id], 1); #else dynamicConnections[nDynamic++] = new AudioConnection(*chorus_modulator[instance_id], 0, *modchorus[instance_id], 1); #endif dynamicConnections[nDynamic++] = new AudioConnection(*modchorus[instance_id], 0, *chorus_mixer[instance_id], 1); dynamicConnections[nDynamic++] = new AudioConnection(*chorus_mixer[instance_id], 0, *delay_fb_mixer[instance_id], 0); dynamicConnections[nDynamic++] = new AudioConnection(*chorus_mixer[instance_id], 0, *delay_mixer[instance_id], 0); dynamicConnections[nDynamic++] = new AudioConnection(*delay_fb_mixer[instance_id], 0, *delay_fx[instance_id], 0); dynamicConnections[nDynamic++] = new AudioConnection(*delay_fx[instance_id], 0, *delay_mixer[instance_id], 1); dynamicConnections[nDynamic++] = new AudioConnection(*delay_mixer[instance_id], 0, *mono2stereo[instance_id], 0); dynamicConnections[nDynamic++] = new AudioConnection(*delay_mixer[instance_id], 0, *delay_fb_mixer[instance_id], 1); dynamicConnections[nDynamic++] = new AudioConnection(*mono2stereo[instance_id], 0, reverb_mixer_r, instance_id); dynamicConnections[nDynamic++] = new AudioConnection(*mono2stereo[instance_id], 1, reverb_mixer_l, instance_id); dynamicConnections[nDynamic++] = new AudioConnection(*mono2stereo[instance_id], 0, master_mixer_r, instance_id); dynamicConnections[nDynamic++] = new AudioConnection(*mono2stereo[instance_id], 1, master_mixer_l, instance_id); #else dynamicConnections[nDynamic++] = new AudioConnection(*dexed_level[instance_id], 0, *mono2stereo[instance_id], 0); dynamicConnections[nDynamic++] = new AudioConnection(*mono2stereo[instance_id], 0, master_mixer_r, instance_id); dynamicConnections[nDynamic++] = new AudioConnection(*mono2stereo[instance_id], 1, master_mixer_l, instance_id); #endif } uint8_t sd_card = 0; Sd2Card card; SdVolume volume; uint8_t midi_timing_counter = 0; // 24 per qarter elapsedMillis midi_timing_timestep; uint16_t midi_timing_quarter = 0; elapsedMillis long_button_pressed; elapsedMillis control_rate; uint8_t active_voices[NUM_DEXED]; #ifdef SHOW_CPU_LOAD_MSEC elapsedMillis cpu_mem_millis; #endif uint32_t cpumax = 0; elapsedMillis cpu_overload_throttle_timer; uint32_t peak_dexed = 0; float peak_dexed_value = 0.0; uint32_t peak_r = 0; uint32_t peak_l = 0; config_t configuration; const uint8_t cs_pins[] = { SDCARD_TEENSY_CS_PIN, SDCARD_AUDIO_CS_PIN }; const uint8_t mosi_pins[] = { SDCARD_TEENSY_MOSI_PIN, SDCARD_AUDIO_MOSI_PIN }; const uint8_t sck_pins[] = { SDCARD_TEENSY_SCK_PIN, SDCARD_AUDIO_SCK_PIN }; char version_string[LCD_cols + 1]; char sd_string[LCD_cols + 1]; char g_voice_name[NUM_DEXED][VOICE_NAME_LEN]; char g_bank_name[NUM_DEXED][BANK_NAME_LEN]; char receive_bank_filename[FILENAME_LEN]; #if defined(USE_FX) // Allocate the delay lines for chorus int16_t delayline[MOD_DELAY_SAMPLE_BUFFER][NUM_DEXED]; #endif #ifdef ENABLE_LCD_UI extern LCDMenuLib2 LCDML; #endif extern void getNoteName(char* noteName, uint8_t noteNumber); /*********************************************************************** SETUP ***********************************************************************/ void setup() { // Start audio system AudioNoInterrupts(); AudioMemory(AUDIO_MEM); #ifdef DISPLAY_LCD_SPI pinMode(SDCARD_CS_PIN, OUTPUT); pinMode(U8X8_CS_PIN, OUTPUT); #endif #ifdef ENABLE_LCD_UI setup_ui(); #endif #ifdef DEBUG #ifdef ENABLE_LCD_UI setup_debug_message(); #endif Serial.begin(SERIAL_SPEED); #endif #ifndef ENABLE_LCD_UI #ifdef DEBUG Serial.println(F("NO LCD DISPLAY ENABLED!")); #endif #endif #ifdef DEBUG generate_version_string(version_string, sizeof(version_string)); Serial.println(F("MicroDexed based on https://github.com/asb2m10/dexed")); Serial.println(F("(c)2018-2020 H. Wirtz ")); Serial.println(F("https://codeberg.org/dcoredump/MicroDexed")); Serial.print(F("Version: ")); Serial.println(version_string); Serial.print(F("CPU-Speed: ")); Serial.print(F_CPU / 1000000.0, 1); Serial.println(F(" MHz")); Serial.println(F("")); Serial.flush(); #endif setup_midi_devices(); for (uint8_t instance_id = 0; instance_id < NUM_DEXED; instance_id++) { if (instance_id < MAX_DEXED) { #ifdef DEBUG Serial.print(F("Creating MicroDexed instance ")); Serial.println(instance_id, DEC); #endif create_audio_engine_chain(instance_id); } else { #ifdef DEBUG Serial.print(F("Ignoring instance ")); Serial.print(instance_id, DEC); Serial.print(F(" (maximum allowed: ")); Serial.print(MAX_DEXED, DEC); Serial.println(F(")")); #endif } } initial_values_from_eeprom(false); #if defined(TEENSY_AUDIO_BOARD) sgtl5000_1.enable(); sgtl5000_1.lineOutLevel(SGTL5000_LINEOUT_LEVEL); sgtl5000_1.dacVolumeRamp(); sgtl5000_1.dacVolume(1.0); //sgtl5000_1.dacVolumeRampLinear(); //sgtl5000_1.dacVolumeRampDisable(); sgtl5000_1.unmuteHeadphone(); sgtl5000_1.unmuteLineout(); sgtl5000_1.volume(SGTL5000_HEADPHONE_VOLUME, SGTL5000_HEADPHONE_VOLUME); // Headphone volume #ifdef SGTL5000_AUDIO_ENHANCE sgtl5000_1.audioPostProcessorEnable(); sgtl5000_1.enhanceBassEnable(); sgtl5000_1.enhanceBass(1.0, 1.5); // enhanceBass(1.0, 1.0, 1, 2); // Configures the bass enhancement by setting the levels of the original stereo signal and the bass-enhanced mono level which will be mixed together. The high-pass filter may be enabled (0) or bypassed (1). sgtl5000_1.surroundSoundEnable(); sgtl5000_1.surroundSound(7, 3); // Configures virtual surround width from 0 (mono) to 7 (widest). select may be set to 1 (disable), 2 (mono input) or 3 (stereo input). sgtl5000_1.autoVolumeEnable(); sgtl5000_1.autoVolumeControl(1, 1, 1, 0.9, 0.01, 0.05); /* The cutoff frequency is specified as follows: value frequency 0 80Hz 1 100Hz 2 125Hz 3 150Hz 4 175Hz 5 200Hz 6 225Hz */ //sgtl5000_1.eqBands(bass, mid_bass, midrange, mid_treble, treble); #else sgtl5000_1.autoVolumeDisable(); sgtl5000_1.surroundSoundDisable(); sgtl5000_1.enhanceBassDisable(); #endif #ifdef DEBUG Serial.println(F("Teensy-Audio-Board enabled.")); #endif #elif defined(TGA_AUDIO_BOARD) wm8731_1.enable(); wm8731_1.volume(1.0); #ifdef DEBUG Serial.println(F("TGA board enabled.")); #endif #elif defined(I2S_AUDIO_ONLY) #ifdef DEBUG Serial.println(F("I2S enabled.")); #endif #elif defined(PT8211_AUDIO) #ifdef DEBUG Serial.println(F("PT8211 enabled.")); #endif #elif defined(TEENSY_DAC_SYMMETRIC) invMixer.gain(0, -1.f); #ifdef DEBUG Serial.println(F("Internal DAC using symmetric outputs enabled.")); #endif #else #ifdef DEBUG Serial.println(F("Internal DAC enabled.")); #endif #endif // start SD card #ifdef DISPLAY_LCD_SPI change_disp_sd(false); #endif sd_card = check_sd_cards(); if (sd_card < 1) { #ifdef DEBUG Serial.println(F("SD card not accessable.")); #endif } else { check_and_create_directories(); for (uint8_t instance_id = 0; instance_id < NUM_DEXED; instance_id++) { // load default SYSEX data load_sd_voice(configuration.performance.bank[instance_id], configuration.performance.voice[instance_id], instance_id); memset(g_voice_name[instance_id], 0, VOICE_NAME_LEN); memset(g_bank_name[instance_id], 0, BANK_NAME_LEN); memset(receive_bank_filename, 0, FILENAME_LEN); } } #ifdef DISPLAY_LCD_SPI change_disp_sd(true); #endif #if defined(USE_FX) // Init effects for (uint8_t instance_id = 0; instance_id < NUM_DEXED; instance_id++) { memset(delayline, 0, sizeof(delayline[instance_id])); if (!modchorus[instance_id]->begin(delayline[instance_id], MOD_DELAY_SAMPLE_BUFFER)) { #ifdef DEBUG Serial.print(F("AudioEffectModulatedDelay - begin failed [")); Serial.print(instance_id); Serial.println(F("]")); #endif while (1); } } #ifdef DEBUG Serial.print(F("MOD_DELAY_SAMPLE_BUFFER=")); Serial.print(MOD_DELAY_SAMPLE_BUFFER, DEC); Serial.println(F(" samples")); #endif #endif set_fx_params(); for (uint8_t instance_id = 0; instance_id < NUM_DEXED; instance_id++) { // INIT PEAK MIXER microdexed_peak_mixer.gain(instance_id, 1.0); // INIT DEXED VOLUME dexed_level[instance_id]->gain(1.0); // INIT DEXED VOICE CONFIG set_voiceconfig_params(instance_id); master_mixer_r.gain(instance_id, 1.0); master_mixer_l.gain(instance_id, 1.0); } master_mixer_r.gain(3, configuration.fx.reverb_level / 100.0); master_mixer_l.gain(3, configuration.fx.reverb_level / 100.0); set_sys_params(); // Initialize processor and memory measurements AudioProcessorUsageMaxReset(); AudioMemoryUsageMaxReset(); #ifdef DEBUG for (uint8_t instance_id = 0; instance_id < NUM_DEXED; instance_id++) { Serial.print(F("Dexed instance ")); Serial.print(instance_id); Serial.println(F(":")); Serial.print(F("Bank/Voice from EEPROM [")); Serial.print(configuration.performance.bank[instance_id], DEC); Serial.print(F("/")); Serial.print(configuration.performance.voice[instance_id], DEC); Serial.println(F("]")); Serial.print(F("Polyphony: ")); Serial.println(configuration.dexed[instance_id].polyphony, DEC); } Serial.print(F("AUDIO_BLOCK_SAMPLES=")); Serial.print(AUDIO_BLOCK_SAMPLES); Serial.print(F(" (Time per block=")); Serial.print(1000000 / (SAMPLE_RATE / AUDIO_BLOCK_SAMPLES)); Serial.println(F("ms)")); #endif #if defined (DEBUG) && defined (SHOW_CPU_LOAD_MSEC) show_cpu_and_mem_usage(); #endif AudioInterrupts(); #ifdef DEBUG Serial.println(F("")); #endif LCDML.OTHER_jumpToFunc(UI_func_voice_select); } void loop() { // MIDI input handling check_midi_devices(); // check encoder ENCODER[ENC_L].update(); ENCODER[ENC_R].update(); #ifdef ENABLE_LCD_UI LCDML.loop(); #endif // CONTROL-RATE-EVENT-HANDLING if (control_rate > CONTROL_RATE_MS) { control_rate = 0; /* // EEPROM update handling if (autostore >= AUTOSTORE_MS && eeprom_update_flag == true) { // only store configuration data to EEPROM when AUTOSTORE_MS is reached and no voices are activated anymore eeprom_update_sys(); } */ // check for value changes, unused voices and CPU overload for (uint8_t instance_id = 0; instance_id < NUM_DEXED; instance_id++) { active_voices[instance_id] = MicroDexed[instance_id]->getNumNotesPlaying(); #if defined(CPU_OVERLOAD_THROTTLE) if (AudioProcessorUsageMax() > CPU_OVERLOAD_THROTTLE && cpu_overload_throttle_timer >= CPU_OVERLOAD_THROTTLE_TIMER) { cpu_overload_throttle_timer = 0; AudioProcessorUsageMaxReset(); MicroDexed[instance_id]->keyup(-1); // kills the oldest note and decreases max_notes #ifdef DEBUG Serial.print(F("!!!CPU overload!!! Automatic throttling polyphony down to ")); Serial.print(MicroDexed[instance_id]->getMaxNotes(), DEC); Serial.print(F(" for instance ")); Serial.print(instance_id, DEC); Serial.println(F(".")); #endif configuration.dexed[instance_id].polyphony = MicroDexed[instance_id]->getMaxNotes(); } #endif } } else yield(); #if defined (DEBUG) && defined (SHOW_CPU_LOAD_MSEC) if (cpu_mem_millis >= SHOW_CPU_LOAD_MSEC) { if (master_peak_r.available()) if (master_peak_r.read() == 1.0) peak_r++; if (master_peak_l.available()) if (master_peak_l.read() == 1.0) peak_l++; if (microdexed_peak.available()) { peak_dexed_value = microdexed_peak.read(); if (peak_dexed_value > 0.99) peak_dexed++; } cpu_mem_millis -= SHOW_CPU_LOAD_MSEC; show_cpu_and_mem_usage(); } #endif } /****************************************************************************** MIDI MESSAGE HANDLER ******************************************************************************/ void handleNoteOn(byte inChannel, byte inNumber, byte inVelocity) { for (uint8_t instance_id = 0; instance_id < NUM_DEXED; instance_id++) { if (checkMidiChannel(inChannel, instance_id)) { if (inNumber >= configuration.dexed[instance_id].lowest_note && inNumber <= configuration.dexed[instance_id].highest_note) { MicroDexed[instance_id]->keydown(inNumber, uint8_t(float(configuration.dexed[instance_id].velocity_level / 127.0)*inVelocity + 0.5)); #ifdef DEBUG char note_name[4]; getNoteName(note_name, inNumber); Serial.print(F("Keydown ")); Serial.print(note_name); Serial.print(F(" instance ")); Serial.print(instance_id, DEC); Serial.print(F(" MIDI-channel ")); Serial.print(inChannel, DEC); Serial.println(); #endif } } } } void handleNoteOff(byte inChannel, byte inNumber, byte inVelocity) { for (uint8_t instance_id = 0; instance_id < NUM_DEXED; instance_id++) { if (checkMidiChannel(inChannel, instance_id)) { if (inNumber >= configuration.dexed[instance_id].lowest_note && inNumber <= configuration.dexed[instance_id].highest_note) { MicroDexed[instance_id]->keyup(inNumber); #ifdef DEBUG char note_name[4]; getNoteName(note_name, inNumber); Serial.print(F("KeyUp ")); Serial.print(note_name); Serial.print(F(" instance ")); Serial.print(instance_id, DEC); Serial.print(F(" MIDI-channel ")); Serial.print(inChannel, DEC); Serial.println(); #endif } } } } void handleControlChange(byte inChannel, byte inCtrl, byte inValue) { inCtrl = constrain(inCtrl, 0, 127); inValue = constrain(inValue, 0, 127); for (uint8_t instance_id = 0; instance_id < NUM_DEXED; instance_id++) { if (checkMidiChannel(inChannel, instance_id)) { #ifdef DEBUG Serial.print(F("INSTANCE ")); Serial.print(instance_id, DEC); Serial.print(F(": CC#")); Serial.print(inCtrl, DEC); Serial.print(F(":")); Serial.println(inValue, DEC); #endif switch (inCtrl) { case 0: // BankSelect MSB #ifdef DEBUG Serial.println(F("BANK-SELECT MSB CC")); #endif configuration.performance.bank[instance_id] = constrain((inValue << 7)&configuration.performance.bank[instance_id], 0, MAX_BANKS - 1); load_sd_voice(configuration.performance.bank[instance_id], configuration.performance.voice[instance_id], instance_id); if (LCDML.FUNC_getID() == LCDML.OTHER_getIDFromFunction(UI_func_voice_select)) { LCDML.OTHER_updateFunc(); LCDML.loop_menu(); } break; case 1: #ifdef DEBUG Serial.println(F("MODWHEEL CC")); #endif MicroDexed[instance_id]->controllers.modwheel_cc = inValue; MicroDexed[instance_id]->controllers.refresh(); break; case 2: #ifdef DEBUG Serial.println(F("BREATH CC")); #endif MicroDexed[instance_id]->controllers.breath_cc = inValue; //MicroDexed[instance_id]->controllers.breath_cc = 100 – BCrange + Output * BCrange * Bcvalue/100 MicroDexed[instance_id]->controllers.refresh(); break; case 4: #ifdef DEBUG Serial.println(F("FOOT CC")); #endif MicroDexed[instance_id]->controllers.foot_cc = inValue; MicroDexed[instance_id]->controllers.refresh(); break; case 5: // Portamento time configuration.dexed[instance_id].portamento_time = inValue; MicroDexed[instance_id]->setPortamentoMode(configuration.dexed[instance_id].portamento_mode, configuration.dexed[instance_id].portamento_glissando, configuration.dexed[instance_id].portamento_time); break; case 7: // Instance Volume #ifdef DEBUG Serial.println(F("VOLUME CC")); #endif configuration.dexed[instance_id].sound_intensity = map(inValue, 0, 0x7f, SOUND_INTENSITY_MIN, SOUND_INTENSITY_MAX); #ifdef USE_FX MicroDexed[instance_id]->fx.Gain = mapfloat(configuration.dexed[instance_id].sound_intensity, SOUND_INTENSITY_MIN, SOUND_INTENSITY_MAX, 0.0, SOUND_INTENSITY_AMP_MAX); #else dexed_level[instance_id]->gain(mapfloat(configuration.dexed[instance_id].sound_intensity, SOUND_INTENSITY_MIN, SOUND_INTENSITY_MAX, 0.0, SOUND_INTENSITY_AMP_MAX)); #endif if (LCDML.FUNC_getID() == LCDML.OTHER_getIDFromFunction(UI_func_sound_intensity)) { LCDML.OTHER_updateFunc(); LCDML.loop_menu(); } break; case 10: // Pan #ifdef DEBUG Serial.println(F("PANORAMA CC")); #endif configuration.dexed[instance_id].pan = map(inValue, 0, 0x7f, PANORAMA_MIN, PANORAMA_MAX); mono2stereo[instance_id]->panorama(mapfloat(configuration.dexed[instance_id].pan, PANORAMA_MIN, PANORAMA_MAX, -1.0, 1.0)); if (LCDML.FUNC_getID() == LCDML.OTHER_getIDFromFunction(UI_func_panorama)) { LCDML.OTHER_updateFunc(); LCDML.loop_menu(); } break; case 32: // BankSelect LSB #ifdef DEBUG Serial.println(F("BANK-SELECT LSB CC")); #endif configuration.performance.bank[instance_id] = constrain(inValue, 0, MAX_BANKS - 1); load_sd_voice(configuration.performance.bank[instance_id], configuration.performance.voice[instance_id], instance_id); if (LCDML.FUNC_getID() == LCDML.OTHER_getIDFromFunction(UI_func_voice_select)) { LCDML.OTHER_updateFunc(); LCDML.loop_menu(); } break; case 64: MicroDexed[instance_id]->setSustain(inValue > 63); if (!MicroDexed[instance_id]->getSustain()) { for (uint8_t note = 0; note < MicroDexed[instance_id]->getMaxNotes(); note++) { if (MicroDexed[instance_id]->voices[note].sustained && !MicroDexed[instance_id]->voices[note].keydown) { MicroDexed[instance_id]->voices[note].dx7_note->keyup(); MicroDexed[instance_id]->voices[note].sustained = false; } } } break; case 65: MicroDexed[instance_id]->setPortamentoMode(configuration.dexed[instance_id].portamento_mode, configuration.dexed[instance_id].portamento_glissando, configuration.dexed[instance_id].portamento_time); if (LCDML.FUNC_getID() == LCDML.OTHER_getIDFromFunction(UI_func_portamento_mode)) { LCDML.OTHER_updateFunc(); LCDML.loop_menu(); } break; #if defined(USE_FX) case 103: // CC 103: filter resonance configuration.dexed[instance_id].filter_resonance = map(inValue, 0, 0x7f, FILTER_RESONANCE_MIN, FILTER_RESONANCE_MAX); MicroDexed[instance_id]->fx.Reso = mapfloat(configuration.dexed[instance_id].filter_resonance, FILTER_RESONANCE_MIN, FILTER_RESONANCE_MAX, 1.0, 0.0); if (LCDML.FUNC_getID() == LCDML.OTHER_getIDFromFunction(UI_func_filter_resonance)) { LCDML.OTHER_updateFunc(); LCDML.loop_menu(); } break; case 104: // CC 104: filter cutoff configuration.dexed[instance_id].filter_cutoff = map(inValue, 0, 0x7f, FILTER_CUTOFF_MIN, FILTER_CUTOFF_MAX); MicroDexed[instance_id]->fx.Cutoff = mapfloat(configuration.dexed[instance_id].filter_cutoff, FILTER_CUTOFF_MIN, FILTER_CUTOFF_MAX, 1.0, 0.0); if (LCDML.FUNC_getID() == LCDML.OTHER_getIDFromFunction(UI_func_filter_cutoff)) { LCDML.OTHER_updateFunc(); LCDML.loop_menu(); } break; case 105: // CC 105: delay time configuration.fx.delay_time[instance_id] = map(inValue, 0, 0x7f, DELAY_TIME_MIN, DELAY_TIME_MAX); delay_fx[instance_id]->delay(0, constrain(configuration.fx.delay_time[instance_id] * 10, DELAY_TIME_MIN, DELAY_TIME_MAX)); if (LCDML.FUNC_getID() == LCDML.OTHER_getIDFromFunction(UI_func_delay_time)) { LCDML.OTHER_updateFunc(); LCDML.loop_menu(); } case 106: // CC 106: delay feedback configuration.fx.delay_feedback[instance_id] = map(inValue, 0, 0x7f, DELAY_FEEDBACK_MIN , DELAY_FEEDBACK_MAX); delay_fb_mixer[instance_id]->gain(1, mapfloat(configuration.fx.delay_feedback[instance_id], DELAY_FEEDBACK_MIN, DELAY_FEEDBACK_MAX, 0.0, 1.0)); // amount of feedback if (LCDML.FUNC_getID() == LCDML.OTHER_getIDFromFunction(UI_func_delay_feedback)) { LCDML.OTHER_updateFunc(); LCDML.loop_menu(); } break; case 107: // CC 107: delay volume configuration.fx.delay_level[instance_id] = map(inValue, 0, 0x7f, DELAY_SEND_MIN, DELAY_SEND_MAX); delay_mixer[instance_id]->gain(1, mapfloat(configuration.fx.delay_level[instance_id], DELAY_LEVEL_MIN, DELAY_LEVEL_MAX, 0.0, 1.0)); if (LCDML.FUNC_getID() == LCDML.OTHER_getIDFromFunction(UI_func_delay_level)) { LCDML.OTHER_updateFunc(); LCDML.loop_menu(); } break; #endif case 120: MicroDexed[instance_id]->panic(); break; case 121: MicroDexed[instance_id]->resetControllers(); break; case 123: MicroDexed[instance_id]->notesOff(); break; case 126: MicroDexed[instance_id]->setMonoMode(true); break; case 127: MicroDexed[instance_id]->setMonoMode(false); break; } } } } void handleAfterTouch(byte inChannel, byte inPressure) { for (uint8_t instance_id = 0; instance_id < NUM_DEXED; instance_id++) { if (checkMidiChannel(inChannel, instance_id)) { MicroDexed[instance_id]->controllers.aftertouch_cc = inPressure; MicroDexed[instance_id]->controllers.refresh(); } } } void handlePitchBend(byte inChannel, int inPitch) { for (uint8_t instance_id = 0; instance_id < NUM_DEXED; instance_id++) { if (checkMidiChannel(inChannel, instance_id)) { MicroDexed[instance_id]->controllers.values_[kControllerPitch] = inPitch + 0x2000; // -8192 to +8191 --> 0 to 16383 } } } void handleProgramChange(byte inChannel, byte inProgram) { for (uint8_t instance_id = 0; instance_id < NUM_DEXED; instance_id++) { if (checkMidiChannel(inChannel, instance_id)) { configuration.performance.voice[instance_id] = constrain(inProgram, 0, MAX_VOICES - 1); #ifdef DISPLAY_LCD_SPI change_disp_sd(false); #endif load_sd_voice(configuration.performance.bank[instance_id], configuration.performance.voice[instance_id], instance_id); #ifdef DISPLAY_LCD_SPI change_disp_sd(true); #endif if (LCDML.FUNC_getID() == LCDML.OTHER_getIDFromFunction(UI_func_voice_select)) { LCDML.OTHER_updateFunc(); LCDML.loop_menu(); } } } } void handleSystemExclusive(byte * sysex, uint len) { for (uint8_t instance_id = 0; instance_id < NUM_DEXED; instance_id++) { if (!checkMidiChannel((sysex[2] & 0x0f) + 1 , instance_id)) { #ifdef DEBUG Serial.print(F("INSTANCE ")); Serial.print(instance_id, DEC); Serial.println(F(": SYSEX-MIDI-Channel mismatch")); #endif return; } #ifdef DEBUG Serial.print(F("SysEx data length: [")); Serial.print(len); Serial.println(F("]")); Serial.println(F("SysEx data:")); for (uint16_t i = 0; i < len; i++) { Serial.print(F("[0x")); uint8_t s = sysex[i]; if (s < 16) Serial.print(F("0")); Serial.print(s, HEX); Serial.print(F("|")); if (s < 100) Serial.print(F("0")); if (s < 10) Serial.print(F("0")); Serial.print(s, DEC); Serial.print(F("]")); if ((i + 1) % 16 == 0) Serial.println(); } Serial.println(); #endif // Check for SYSEX end byte if (sysex[len - 1] != 0xf7) { #ifdef DEBUG Serial.println(F("E: SysEx end status byte not detected.")); #endif return; } if (sysex[1] != 0x43) // check for Yamaha sysex { #ifdef DEBUG Serial.println(F("E: SysEx vendor not Yamaha.")); #endif return; } #ifdef DEBUG Serial.print(F("Substatus: [")); Serial.print((sysex[2] & 0x70) >> 4); Serial.println(F("]")); #endif // parse parameter change if (len == 7) { if (((sysex[3] & 0x7c) >> 2) != 0 && ((sysex[3] & 0x7c) >> 2) != 2) { #ifdef DEBUG Serial.println(F("E: Not a SysEx parameter or function parameter change.")); #endif return; } sysex[4] &= 0x7f; sysex[5] &= 0x7f; if ((sysex[3] & 0x7c) >> 2 == 0) { #ifdef DEBUG Serial.println(F("SysEx Voice parameter:")); Serial.print("Parameter #"); Serial.print(sysex[4] + ((sysex[3] & 0x03) * 128), DEC); Serial.print(" Value: "); Serial.println(sysex[5], DEC); #endif MicroDexed[instance_id]->data[sysex[4] + ((sysex[3] & 0x03) * 128)] = sysex[5]; } else if ((sysex[3] & 0x7c) >> 2 == 2) { #ifdef DEBUG Serial.println(F("SysEx Function parameter:")); Serial.print("Parameter #"); Serial.print(sysex[4], DEC); Serial.print(" Value: "); Serial.println(sysex[5], DEC); #endif switch (sysex[4]) { case 65: configuration.dexed[instance_id].pb_range = constrain(sysex[5], PB_RANGE_MIN, PB_RANGE_MAX); MicroDexed[instance_id]->controllers.values_[kControllerPitchRange] = configuration.dexed[instance_id].pb_range; if (LCDML.FUNC_getID() == LCDML.OTHER_getIDFromFunction(UI_func_pb_range)) { LCDML.OTHER_updateFunc(); LCDML.loop_menu(); } break; case 66: configuration.dexed[instance_id].pb_step = constrain(sysex[5], PB_STEP_MIN, PB_STEP_MAX); MicroDexed[instance_id]->controllers.values_[kControllerPitchStep] = configuration.dexed[instance_id].pb_step; if (LCDML.FUNC_getID() == LCDML.OTHER_getIDFromFunction(UI_func_pb_step)) { LCDML.OTHER_updateFunc(); LCDML.loop_menu(); } break; case 67: configuration.dexed[instance_id].portamento_mode = constrain(sysex[5], PORTAMENTO_MODE_MIN, PORTAMENTO_MODE_MAX); MicroDexed[instance_id]->setPortamentoMode(configuration.dexed[instance_id].portamento_mode, configuration.dexed[instance_id].portamento_glissando, configuration.dexed[instance_id].portamento_time); if (LCDML.FUNC_getID() == LCDML.OTHER_getIDFromFunction(UI_func_portamento_mode)) { LCDML.OTHER_updateFunc(); LCDML.loop_menu(); } break; case 68: configuration.dexed[instance_id].portamento_glissando = constrain(sysex[5], PORTAMENTO_GLISSANDO_MIN, PORTAMENTO_GLISSANDO_MAX); MicroDexed[instance_id]->setPortamentoMode(configuration.dexed[instance_id].portamento_mode, configuration.dexed[instance_id].portamento_glissando, configuration.dexed[instance_id].portamento_time); if (LCDML.FUNC_getID() == LCDML.OTHER_getIDFromFunction(UI_func_portamento_glissando)) { LCDML.OTHER_updateFunc(); LCDML.loop_menu(); } break; case 69: configuration.dexed[instance_id].portamento_time = constrain(sysex[5], PORTAMENTO_TIME_MIN, PORTAMENTO_TIME_MAX); MicroDexed[instance_id]->setPortamentoMode(configuration.dexed[instance_id].portamento_mode, configuration.dexed[instance_id].portamento_glissando, configuration.dexed[instance_id].portamento_time); if (LCDML.FUNC_getID() == LCDML.OTHER_getIDFromFunction(UI_func_portamento_time)) { LCDML.OTHER_updateFunc(); LCDML.loop_menu(); } break; case 70: configuration.dexed[instance_id].mw_range = constrain(sysex[5], MW_RANGE_MIN, MW_RANGE_MAX); MicroDexed[instance_id]->controllers.wheel.setRange(configuration.dexed[instance_id].mw_range); if (LCDML.FUNC_getID() == LCDML.OTHER_getIDFromFunction(UI_func_mw_range)) { LCDML.OTHER_updateFunc(); LCDML.loop_menu(); } break; case 71: configuration.dexed[instance_id].mw_assign = constrain(sysex[5], MW_ASSIGN_MIN, MW_ASSIGN_MAX); MicroDexed[instance_id]->controllers.wheel.setTarget(configuration.dexed[instance_id].mw_assign); if (LCDML.FUNC_getID() == LCDML.OTHER_getIDFromFunction(UI_func_mw_assign)) { LCDML.OTHER_updateFunc(); LCDML.loop_menu(); } break; case 72: configuration.dexed[instance_id].fc_range = constrain(sysex[5], FC_RANGE_MIN, FC_RANGE_MAX); MicroDexed[instance_id]->controllers.foot.setRange(configuration.dexed[instance_id].fc_range); if (LCDML.FUNC_getID() == LCDML.OTHER_getIDFromFunction(UI_func_fc_range)) { LCDML.OTHER_updateFunc(); LCDML.loop_menu(); } break; case 73: configuration.dexed[instance_id].fc_assign = constrain(sysex[5], FC_ASSIGN_MIN, FC_ASSIGN_MAX); MicroDexed[instance_id]->controllers.foot.setTarget(configuration.dexed[instance_id].fc_assign); if (LCDML.FUNC_getID() == LCDML.OTHER_getIDFromFunction(UI_func_fc_assign)) { LCDML.OTHER_updateFunc(); LCDML.loop_menu(); } break; case 74: configuration.dexed[instance_id].bc_range = constrain(sysex[5], BC_RANGE_MIN, BC_RANGE_MAX); MicroDexed[instance_id]->controllers.breath.setRange(configuration.dexed[instance_id].bc_range); if (LCDML.FUNC_getID() == LCDML.OTHER_getIDFromFunction(UI_func_bc_range)) { LCDML.OTHER_updateFunc(); LCDML.loop_menu(); } break; case 75: configuration.dexed[instance_id].bc_assign = constrain(sysex[5], BC_ASSIGN_MIN, BC_ASSIGN_MAX); MicroDexed[instance_id]->controllers.breath.setTarget(configuration.dexed[instance_id].bc_assign); if (LCDML.FUNC_getID() == LCDML.OTHER_getIDFromFunction(UI_func_bc_assign)) { LCDML.OTHER_updateFunc(); LCDML.loop_menu(); } break; case 76: configuration.dexed[instance_id].at_range = constrain(sysex[5], AT_RANGE_MIN, AT_RANGE_MAX); MicroDexed[instance_id]->controllers.at.setRange(configuration.dexed[instance_id].at_range); if (LCDML.FUNC_getID() == LCDML.OTHER_getIDFromFunction(UI_func_at_range)) { LCDML.OTHER_updateFunc(); LCDML.loop_menu(); } break; case 77: configuration.dexed[instance_id].at_assign = constrain(sysex[5], AT_ASSIGN_MIN, AT_ASSIGN_MAX); MicroDexed[instance_id]->controllers.at.setTarget(configuration.dexed[instance_id].at_assign); if (LCDML.FUNC_getID() == LCDML.OTHER_getIDFromFunction(UI_func_at_assign)) { LCDML.OTHER_updateFunc(); LCDML.loop_menu(); } break; default: MicroDexed[instance_id]->data[sysex[4]] = sysex[5]; // set function parameter break; } MicroDexed[instance_id]->controllers.refresh(); } #ifdef DEBUG else { Serial.println(F("E: Unknown SysEx voice or function.")); } #endif } else if (len == 163) { int32_t bulk_checksum_calc = 0; int8_t bulk_checksum = sysex[161]; // 1 Voice bulk upload #ifdef DEBUG Serial.println(F("One Voice bulk upload")); #endif if ((sysex[3] & 0x7f) != 0) { #ifdef DEBUG Serial.println(F("E: Not a SysEx voice bulk upload.")); #endif return; } if (((sysex[4] << 7) | sysex[5]) != 0x9b) { #ifdef DEBUG Serial.println(F("E: Wrong length for SysEx voice bulk upload (not 155).")); #endif return; } // checksum calculation for (uint8_t i = 0; i < 155 ; i++) { bulk_checksum_calc -= sysex[i + 6]; } bulk_checksum_calc &= 0x7f; if (bulk_checksum_calc != bulk_checksum) { #ifdef DEBUG Serial.print(F("E: Checksum error for one voice [0x")); Serial.print(bulk_checksum, HEX); Serial.print(F("/0x")); Serial.print(bulk_checksum_calc, HEX); Serial.println(F("]")); #endif return; } // fix voice name for (uint8_t i = 0; i < 10; i++) { if (sysex[151 + i] > 126) // filter characters sysex[151 + i] = 32; } // load sysex-data into voice memory MicroDexed[instance_id]->loadVoiceParameters(&sysex[6]); #ifdef DEBUG show_patch(instance_id); #endif // show voice name strncpy(g_voice_name[instance_id], (char*)&sysex[151], VOICE_NAME_LEN - 1); if (LCDML.FUNC_getID() == LCDML.OTHER_getIDFromFunction(UI_func_voice_select)) { LCDML.OTHER_updateFunc(); LCDML.loop_menu(); } } else if (len == 4104 && strlen(receive_bank_filename) > 0) { int32_t bulk_checksum_calc = 0; int8_t bulk_checksum = sysex[4102]; // 1 Voice bulk upload #ifdef DEBUG Serial.println(F("Bank bulk upload")); #endif if ((sysex[3] & 0x7f) != 9) { #ifdef DEBUG Serial.println(F("E: Not a SysEx bank bulk upload.")); #endif return; } if (((sysex[4] << 7) | sysex[5]) != 0x1000) { #ifdef DEBUG Serial.println(F("E: Wrong length for SysEx bank bulk upload (not 4096).")); #endif return; } // checksum calculation for (uint8_t i = 0; i < 4096 ; i++) { bulk_checksum_calc -= sysex[i + 6]; } bulk_checksum_calc &= 0x7f; if (bulk_checksum_calc != bulk_checksum) { #ifdef DEBUG Serial.print(F("E: Checksum error for bank [0x")); Serial.print(bulk_checksum, HEX); Serial.print(F("/0x")); Serial.print(bulk_checksum_calc, HEX); Serial.println(F("]")); #endif return; } #ifdef DEBUG if (save_sd_bank(receive_bank_filename, sysex)) { Serial.print(F("Bank saved as [")); Serial.print(receive_bank_filename); Serial.println(F("]")); } else { Serial.println(F("Error during saving bank as [")); Serial.print(receive_bank_filename); Serial.println(F("]")); } #else save_sd_bank(receive_bank_filename, sysex); #endif memset(receive_bank_filename, 0, FILENAME_LEN); } #ifdef DEBUG else Serial.println(F("E: SysEx parameter length wrong.")); #endif } } void handleTimeCodeQuarterFrame(byte data) { ; } void handleAfterTouchPoly(byte inChannel, byte inNumber, byte inVelocity) { ; } void handleSongSelect(byte inSong) { ; } void handleTuneRequest(void) { ; } void handleClock(void) { midi_timing_counter++; if (midi_timing_counter % 24 == 0) { midi_timing_quarter = midi_timing_timestep; midi_timing_counter = 0; midi_timing_timestep = 0; // Adjust delay control here #ifdef DEBUG Serial.print(F("MIDI Clock: ")); Serial.print(60000 / midi_timing_quarter, DEC); Serial.print(F("bpm (")); Serial.print(midi_timing_quarter, DEC); Serial.println(F("ms per quarter)")); #endif } } void handleStart(void) { ; } void handleContinue(void) { ; } void handleStop(void) { ; } void handleActiveSensing(void) { ; } void handleSystemReset(void) { for (uint8_t instance_id = 0; instance_id < NUM_DEXED; instance_id++) { #ifdef DEBUG Serial.println(F("MIDI SYSEX RESET")); #endif MicroDexed[instance_id]->notesOff(); MicroDexed[instance_id]->panic(); MicroDexed[instance_id]->resetControllers(); } } /****************************************************************************** MIDI HELPER ******************************************************************************/ bool checkMidiChannel(byte inChannel, uint8_t instance_id) { // check for MIDI channel if (configuration.dexed[instance_id].midi_channel == MIDI_CHANNEL_OMNI) { return (true); } else if (inChannel != configuration.dexed[instance_id].midi_channel) { #ifdef DEBUG Serial.print(F("INSTANCE ")); Serial.print(instance_id, DEC); Serial.print(F(": Ignoring MIDI data on channel ")); Serial.print(inChannel); Serial.print(F("(listening on ")); Serial.print(configuration.dexed[instance_id].midi_channel); Serial.println(F(")")); #endif return (false); } return (true); } /****************************************************************************** VOLUME HELPER ******************************************************************************/ void set_volume(uint8_t v, uint8_t m) { configuration.sys.vol = v; if (configuration.sys.vol > 100) configuration.sys.vol = 100; configuration.sys.mono = m; #ifdef DEBUG Serial.print(F("Setting volume: VOL=")); Serial.println(v, DEC); #endif volume_r.gain(v / 100.0); volume_l.gain(v / 100.0); switch (m) { case 0: // stereo stereo2mono.stereo(true); for (uint8_t instance_id = 0; instance_id < NUM_DEXED; instance_id++) mono2stereo[instance_id]->panorama(mapfloat(configuration.dexed[instance_id].pan, PANORAMA_MIN, PANORAMA_MAX, -1.0, 1.0)); break; case 1: // mono both stereo2mono.stereo(false); for (uint8_t instance_id = 0; instance_id < NUM_DEXED; instance_id++) mono2stereo[instance_id]->panorama(mapfloat(PANORAMA_DEFAULT, PANORAMA_MIN, PANORAMA_MAX, -1.0, 1.0)); break; case 2: // mono right volume_l.gain(0.0); stereo2mono.stereo(false); for (uint8_t instance_id = 0; instance_id < NUM_DEXED; instance_id++) mono2stereo[instance_id]->panorama(mapfloat(PANORAMA_MAX, PANORAMA_MIN, PANORAMA_MAX, -1.0, 1.0)); break; case 3: // mono left volume_r.gain(0.0); stereo2mono.stereo(false); for (uint8_t instance_id = 0; instance_id < NUM_DEXED; instance_id++) mono2stereo[instance_id]->panorama(mapfloat(PANORAMA_MIN, PANORAMA_MIN, PANORAMA_MAX, -1.0, 1.0)); break; } } /****************************************************************************** EEPROM HELPER ******************************************************************************/ void initial_values_from_eeprom(bool init) { uint32_t _m_; EEPROM.get(EEPROM_START_ADDRESS + offsetof(configuration_s, _marker_), _m_); if (_m_ != EEPROM_MARKER) { #ifdef DEBUG Serial.println(F("Found wrong EEPROM marker, initializing EEPROM...")); #endif init = true; configuration._marker_ = EEPROM_MARKER; } if (init == true) init_configuration(); else { #ifdef DEBUG Serial.println(F("Loading inital system data from EEPROM.")); #endif eeprom_get_sys(); eeprom_get_fx(); eeprom_get_performance(); for (uint8_t i = 0; i < NUM_DEXED; i++) eeprom_get_dexed(i); #ifdef DEBUG show_configuration(); #endif check_configuration(); for (uint8_t instance_id = 0; instance_id < NUM_DEXED; instance_id++) { MicroDexed[instance_id]->setPBController(configuration.dexed[instance_id].pb_range, configuration.dexed[instance_id].pb_step); MicroDexed[instance_id]->setMWController(configuration.dexed[instance_id].mw_range, configuration.dexed[instance_id].mw_assign, configuration.dexed[instance_id].mw_mode); MicroDexed[instance_id]->setFCController(configuration.dexed[instance_id].fc_range, configuration.dexed[instance_id].fc_assign, configuration.dexed[instance_id].fc_mode); MicroDexed[instance_id]->setBCController(configuration.dexed[instance_id].bc_range, configuration.dexed[instance_id].bc_assign, configuration.dexed[instance_id].bc_mode); MicroDexed[instance_id]->setATController(configuration.dexed[instance_id].at_range, configuration.dexed[instance_id].at_assign, configuration.dexed[instance_id].at_mode); MicroDexed[instance_id]->controllers.refresh(); MicroDexed[instance_id]->setOPs(configuration.dexed[instance_id].op_enabled); MicroDexed[instance_id]->doRefreshVoice(); #if defined(USE_FX) //chorus_mixer[instance_id]->gain(0, 1.0 - pseudo_log_curve(mapfloat(configuration.fx.chorus_level[instance_id], CHORUS_LEVEL_MIN, CHORUS_LEVEL_MAX, 0.0, 1.0), true)); //chorus_mixer[instance_id]->gain(1, pseudo_log_curve(mapfloat(configuration.fx.chorus_level[instance_id], CHORUS_LEVEL_MIN, CHORUS_LEVEL_MAX, 0.0, 1.0), true)); //chorus_mixer[instance_id]->gain(0, 1.0 - mapfloat(configuration.fx.chorus_level[instance_id], CHORUS_LEVEL_MIN, CHORUS_LEVEL_MAX, 0.0, 0.5)); chorus_mixer[instance_id]->gain(1, mapfloat(configuration.fx.chorus_level[instance_id], CHORUS_LEVEL_MIN, CHORUS_LEVEL_MAX, 0.0, 0.5)); delay_mixer[instance_id]->gain(0, 1.0); delay_mixer[instance_id]->gain(1, mapfloat(configuration.fx.delay_level[instance_id], DELAY_LEVEL_MIN, DELAY_LEVEL_MAX, 0.0, 1.0)); delay_fb_mixer[instance_id]->gain(0, 1.0); delay_fb_mixer[instance_id]->gain(1, mapfloat(configuration.fx.delay_feedback[instance_id], DELAY_FEEDBACK_MIN, DELAY_FEEDBACK_MAX, 0.0, 1.0)); // MicroDexed[instance_id]->fx.Gain = configuration.dexed[instance_id].sound_intensity / 100.0; MicroDexed[instance_id]->fx.Gain = 1.0; MicroDexed[instance_id]->fx.Reso = mapfloat(configuration.dexed[instance_id].filter_resonance, FILTER_RESONANCE_MIN, FILTER_RESONANCE_MAX, 1.0, 0.0); MicroDexed[instance_id]->fx.Cutoff = mapfloat(configuration.dexed[instance_id].filter_cutoff, FILTER_CUTOFF_MIN, FILTER_CUTOFF_MAX, 1.0, 0.0); #if NUM_DEXED >1 reverb_mixer_r.gain(instance_id, configuration.fx.reverb_send[instance_id] / 100.0); reverb_mixer_l.gain(instance_id, configuration.fx.reverb_send[instance_id] / 100.0); #else reverb_mixer_r.gain(instance_id, 1.0); reverb_mixer_l.gain(instance_id, 1.0); #endif #endif MicroDexed[instance_id]->setOPs(configuration.dexed[instance_id].op_enabled); dexed_level[instance_id]->gain(mapfloat(configuration.dexed[instance_id].sound_intensity, SOUND_INTENSITY_MIN, SOUND_INTENSITY_MAX, 0.0, SOUND_INTENSITY_AMP_MAX)); } set_volume(configuration.sys.vol, configuration.sys.mono); #ifdef DEBUG Serial.println(F("OK, loaded!")); #endif } #ifdef DEBUG show_configuration(); #endif } void check_configuration(void) { configuration.sys.instances = constrain(configuration.sys.instances, INSTANCES_MIN, INSTANCES_MAX); configuration.sys.vol = constrain(configuration.sys.vol, VOLUME_MIN, VOLUME_MAX); configuration.sys.mono = constrain(configuration.sys.mono, MONO_MIN, MONO_MAX); configuration.sys.soft_midi_thru = constrain(configuration.sys.soft_midi_thru, SOFT_MIDI_THRU_MIN, SOFT_MIDI_THRU_MAX); configuration.sys.performance_number = constrain(configuration.sys.performance_number, PERFORMANCE_NUM_MIN, PERFORMANCE_NUM_MAX); configuration.performance.fx_number = constrain(configuration.performance.fx_number, FX_NUM_MIN, FX_NUM_MAX); configuration.fx.reverb_roomsize = constrain(configuration.fx.reverb_roomsize, REVERB_ROOMSIZE_MIN, REVERB_ROOMSIZE_MAX); configuration.fx.reverb_damping = constrain(configuration.fx.reverb_damping, REVERB_DAMPING_MIN, REVERB_DAMPING_MAX); configuration.fx.reverb_level = constrain(configuration.fx.reverb_level, REVERB_LEVEL_MIN, REVERB_LEVEL_MAX); for (uint8_t instance_id = 0; instance_id < NUM_DEXED; instance_id++) { configuration.performance.bank[instance_id] = constrain(configuration.performance.bank[instance_id], 0, MAX_BANKS - 1); configuration.performance.voice[instance_id] = constrain(configuration.performance.voice[instance_id], 0, MAX_VOICES - 1); configuration.performance.voiceconfig_number[instance_id] = constrain(configuration.performance.voiceconfig_number[instance_id], VOICECONFIG_NUM_MIN, VOICECONFIG_NUM_MAX); configuration.dexed[instance_id].midi_channel = constrain(configuration.dexed[instance_id].midi_channel, MIDI_CHANNEL_MIN, MIDI_CHANNEL_MAX); configuration.dexed[instance_id].lowest_note = constrain(configuration.dexed[instance_id].lowest_note, INSTANCE_LOWEST_NOTE_MIN, INSTANCE_LOWEST_NOTE_MAX); configuration.dexed[instance_id].highest_note = constrain(configuration.dexed[instance_id].highest_note, INSTANCE_HIGHEST_NOTE_MIN, INSTANCE_HIGHEST_NOTE_MAX); configuration.dexed[instance_id].filter_cutoff = constrain(configuration.dexed[instance_id].filter_cutoff, FILTER_CUTOFF_MIN, FILTER_CUTOFF_MAX); configuration.dexed[instance_id].filter_resonance = constrain(configuration.dexed[instance_id].filter_resonance, FILTER_RESONANCE_MIN, FILTER_RESONANCE_MAX); configuration.dexed[instance_id].sound_intensity = constrain(configuration.dexed[instance_id].sound_intensity, SOUND_INTENSITY_MIN, SOUND_INTENSITY_MAX); configuration.dexed[instance_id].pan = constrain(configuration.dexed[instance_id].pan, PANORAMA_MIN, PANORAMA_MAX); configuration.dexed[instance_id].transpose = constrain(configuration.dexed[instance_id].transpose, TRANSPOSE_MIN, TRANSPOSE_MAX); configuration.dexed[instance_id].tune = constrain(configuration.dexed[instance_id].tune, TUNE_MIN, TUNE_MAX); #if NUM_DEXED > 1 configuration.dexed[instance_id].polyphony = constrain(configuration.dexed[instance_id].polyphony, POLYPHONY_MIN, POLYPHONY_MAX / 2); #else configuration.dexed[instance_id].polyphony = constrain(configuration.dexed[instance_id].polyphony, POLYPHONY_MIN, POLYPHONY_MAX); #endif configuration.dexed[instance_id].velocity_level = constrain(configuration.dexed[instance_id].velocity_level, VELOCITY_LEVEL_MIN, VELOCITY_LEVEL_MAX); configuration.dexed[instance_id].engine = constrain(configuration.dexed[instance_id].engine, ENGINE_MIN, ENGINE_MAX); configuration.dexed[instance_id].monopoly = constrain(configuration.dexed[instance_id].monopoly, MONOPOLY_MIN, MONOPOLY_MAX); configuration.dexed[instance_id].note_refresh = constrain(configuration.dexed[instance_id].note_refresh, NOTE_REFRESH_MIN, NOTE_REFRESH_MAX); configuration.dexed[instance_id].pb_range = constrain(configuration.dexed[instance_id].pb_range, PB_RANGE_MIN, PB_RANGE_MAX); configuration.dexed[instance_id].pb_step = constrain(configuration.dexed[instance_id].pb_step, PB_STEP_MIN, PB_STEP_MAX); configuration.dexed[instance_id].mw_range = constrain(configuration.dexed[instance_id].mw_range, MW_RANGE_MIN, MW_RANGE_MAX); configuration.dexed[instance_id].mw_assign = constrain(configuration.dexed[instance_id].mw_assign, MW_ASSIGN_MIN, MW_ASSIGN_MAX); configuration.dexed[instance_id].mw_mode = constrain(configuration.dexed[instance_id].mw_mode, MW_MODE_MIN, MW_MODE_MAX); configuration.dexed[instance_id].fc_range = constrain(configuration.dexed[instance_id].fc_range, FC_RANGE_MIN, FC_RANGE_MAX); configuration.dexed[instance_id].fc_assign = constrain(configuration.dexed[instance_id].fc_assign, FC_ASSIGN_MIN, FC_ASSIGN_MAX); configuration.dexed[instance_id].fc_mode = constrain(configuration.dexed[instance_id].fc_mode, FC_MODE_MIN, FC_MODE_MAX); configuration.dexed[instance_id].bc_range = constrain(configuration.dexed[instance_id].bc_range, BC_RANGE_MIN, BC_RANGE_MAX); configuration.dexed[instance_id].bc_assign = constrain(configuration.dexed[instance_id].bc_assign, BC_ASSIGN_MIN, BC_ASSIGN_MAX); configuration.dexed[instance_id].bc_mode = constrain(configuration.dexed[instance_id].bc_mode, BC_MODE_MIN, BC_MODE_MAX); configuration.dexed[instance_id].at_range = constrain(configuration.dexed[instance_id].at_range, AT_RANGE_MIN, AT_RANGE_MAX); configuration.dexed[instance_id].at_assign = constrain(configuration.dexed[instance_id].at_assign, AT_ASSIGN_MIN, AT_ASSIGN_MAX); configuration.dexed[instance_id].at_mode = constrain(configuration.dexed[instance_id].at_mode, AT_MODE_MIN, AT_MODE_MAX); configuration.dexed[instance_id].portamento_mode = constrain(configuration.dexed[instance_id].portamento_mode, PORTAMENTO_MODE_MIN, PORTAMENTO_MODE_MAX); configuration.dexed[instance_id].portamento_glissando = constrain(configuration.dexed[instance_id].portamento_glissando, PORTAMENTO_GLISSANDO_MIN, PORTAMENTO_GLISSANDO_MAX); configuration.dexed[instance_id].portamento_time = constrain(configuration.dexed[instance_id].portamento_time, PORTAMENTO_TIME_MIN, PORTAMENTO_TIME_MAX); configuration.dexed[instance_id].op_enabled = constrain(configuration.dexed[instance_id].op_enabled, OP_ENABLED_MIN, OP_ENABLED_MAX); configuration.fx.chorus_frequency[instance_id] = constrain(configuration.fx.chorus_frequency[instance_id], CHORUS_FREQUENCY_MIN, CHORUS_FREQUENCY_MAX); configuration.fx.chorus_waveform[instance_id] = constrain(configuration.fx.chorus_waveform[instance_id], CHORUS_WAVEFORM_MIN, CHORUS_WAVEFORM_MAX); configuration.fx.chorus_depth[instance_id] = constrain(configuration.fx.chorus_depth[instance_id], CHORUS_DEPTH_MIN, CHORUS_DEPTH_MAX); configuration.fx.chorus_level[instance_id] = constrain(configuration.fx.chorus_level[instance_id], CHORUS_LEVEL_MIN, CHORUS_LEVEL_MAX); configuration.fx.delay_time[instance_id] = constrain(configuration.fx.delay_time[instance_id], DELAY_TIME_MIN, DELAY_TIME_MAX); configuration.fx.delay_feedback[instance_id] = constrain(configuration.fx.delay_feedback[instance_id], DELAY_FEEDBACK_MIN, DELAY_FEEDBACK_MAX); configuration.fx.delay_level[instance_id] = constrain(configuration.fx.delay_level[instance_id], DELAY_LEVEL_MIN, DELAY_LEVEL_MAX); configuration.fx.reverb_send[instance_id] = constrain(configuration.fx.reverb_send[instance_id], REVERB_SEND_MIN, REVERB_SEND_MAX); } } void init_configuration(void) { #ifdef DEBUG Serial.println(F("INITIALIZING CONFIGURATION")); #endif configuration.sys.instances = INSTANCES_DEFAULT; configuration.sys.vol = VOLUME_DEFAULT; configuration.sys.mono = MONO_DEFAULT; configuration.sys.soft_midi_thru = SOFT_MIDI_THRU_DEFAULT; configuration.sys.performance_number = PERFORMANCE_NUM_DEFAULT; configuration.fx.reverb_roomsize = REVERB_ROOMSIZE_DEFAULT; configuration.fx.reverb_damping = REVERB_DAMPING_DEFAULT; configuration.fx.reverb_level = REVERB_LEVEL_DEFAULT; configuration.performance.fx_number = FX_NUM_DEFAULT; for (uint8_t instance_id = 0; instance_id < MAX_DEXED; instance_id++) { configuration.performance.bank[instance_id] = SYSEXBANK_DEFAULT; configuration.performance.voice[instance_id] = SYSEXSOUND_DEFAULT; configuration.performance.voiceconfig_number[instance_id] = VOICECONFIG_NUM_DEFAULT; configuration.dexed[instance_id].midi_channel = DEFAULT_MIDI_CHANNEL; configuration.dexed[instance_id].lowest_note = INSTANCE_LOWEST_NOTE_MIN; configuration.dexed[instance_id].highest_note = INSTANCE_HIGHEST_NOTE_MAX; configuration.dexed[instance_id].filter_cutoff = FILTER_CUTOFF_DEFAULT; configuration.dexed[instance_id].filter_resonance = FILTER_RESONANCE_DEFAULT; configuration.dexed[instance_id].sound_intensity = SOUND_INTENSITY_DEFAULT; configuration.dexed[instance_id].pan = PANORAMA_DEFAULT; configuration.dexed[instance_id].transpose = TRANSPOSE_DEFAULT; configuration.dexed[instance_id].tune = TUNE_DEFAULT; configuration.dexed[instance_id].velocity_level = VELOCITY_LEVEL_DEFAULT; configuration.dexed[instance_id].engine = ENGINE_DEFAULT; configuration.dexed[instance_id].monopoly = MONOPOLY_DEFAULT; configuration.dexed[instance_id].note_refresh = NOTE_REFRESH_DEFAULT; configuration.dexed[instance_id].pb_range = PB_RANGE_DEFAULT; configuration.dexed[instance_id].pb_step = PB_STEP_DEFAULT; configuration.dexed[instance_id].mw_range = MW_RANGE_DEFAULT; configuration.dexed[instance_id].mw_assign = MW_ASSIGN_DEFAULT; configuration.dexed[instance_id].mw_mode = MW_MODE_DEFAULT; configuration.dexed[instance_id].fc_range = FC_RANGE_DEFAULT; configuration.dexed[instance_id].fc_assign = FC_ASSIGN_DEFAULT; configuration.dexed[instance_id].fc_mode = FC_MODE_DEFAULT; configuration.dexed[instance_id].bc_range = BC_RANGE_DEFAULT; configuration.dexed[instance_id].bc_assign = BC_ASSIGN_DEFAULT; configuration.dexed[instance_id].bc_mode = BC_MODE_DEFAULT; configuration.dexed[instance_id].at_range = AT_RANGE_DEFAULT; configuration.dexed[instance_id].at_assign = AT_ASSIGN_DEFAULT; configuration.dexed[instance_id].at_mode = AT_MODE_DEFAULT; configuration.dexed[instance_id].portamento_mode = PORTAMENTO_MODE_DEFAULT; configuration.dexed[instance_id].portamento_glissando = PORTAMENTO_GLISSANDO_DEFAULT; configuration.dexed[instance_id].portamento_time = PORTAMENTO_TIME_DEFAULT; configuration.dexed[instance_id].op_enabled = OP_ENABLED_DEFAULT; configuration.fx.chorus_frequency[instance_id] = CHORUS_FREQUENCY_DEFAULT; configuration.fx.chorus_waveform[instance_id] = CHORUS_WAVEFORM_DEFAULT; configuration.fx.chorus_depth[instance_id] = CHORUS_DEPTH_DEFAULT; configuration.fx.chorus_level[instance_id] = CHORUS_LEVEL_DEFAULT; configuration.fx.delay_time[instance_id] = DELAY_TIME_DEFAULT / 10; configuration.fx.delay_feedback[instance_id] = DELAY_FEEDBACK_DEFAULT; configuration.fx.delay_level[instance_id] = DELAY_LEVEL_DEFAULT; configuration.fx.reverb_send[instance_id] = REVERB_SEND_DEFAULT; configuration.performance.bank[instance_id] = SYSEXBANK_DEFAULT; configuration.performance.voice[instance_id] = SYSEXSOUND_DEFAULT; #if NUM_DEXED > 1 configuration.dexed[instance_id].polyphony = POLYPHONY_DEFAULT / 2; #else if (instance_id == 0) { configuration.dexed[instance_id].polyphony = POLYPHONY_DEFAULT; } else { configuration.dexed[instance_id].polyphony = 0; } #endif #if NUM_DEXED > 1 MicroDexed[instance_id]->controllers.refresh(); #else if (instance_id == 0) MicroDexed[instance_id]->controllers.refresh(); #endif } set_volume(configuration.sys.vol, configuration.sys.mono); eeprom_update(); } void eeprom_update(void) { uint8_t* c = (uint8_t*)&configuration; for (uint16_t i = 0; i < sizeof(configuration); i++) EEPROM.update(EEPROM_START_ADDRESS + i, c[i]); } void eeprom_update_sys(void) { uint8_t* c = (uint8_t*)&configuration.sys; for (uint16_t i = 0; i < sizeof(configuration.sys); i++) EEPROM.update(EEPROM_START_ADDRESS + offsetof(configuration_s, sys) + i, c[i]); #ifdef DEBUG Serial.println(F("Updating EEPROM sys.")); #endif } bool eeprom_get_sys(void) { EEPROM.get(EEPROM_START_ADDRESS + offsetof(configuration_s, sys), configuration.sys); return (true); } void eeprom_update_fx(void) { uint8_t* c = (uint8_t*)&configuration.fx; for (uint16_t i = 0; i < sizeof(configuration.fx); i++) EEPROM.update(EEPROM_START_ADDRESS + offsetof(configuration_s, fx) + i, c[i]); #ifdef DEBUG Serial.println(F("Updating EEPROM fx.")); #endif } bool eeprom_get_fx(void) { EEPROM.get(EEPROM_START_ADDRESS + offsetof(configuration_s, fx), configuration.fx); return (true); } void eeprom_update_dexed(uint8_t instance_id) { #if NUM_DEXED == 1 uint8_t* c = (uint8_t*)&configuration.dexed[0]; for (uint16_t i = 0; i < sizeof(configuration.dexed[0]); i++) EEPROM.update(EEPROM_START_ADDRESS + offsetof(configuration_s, dexed[0]) + i, c[i]); #else uint8_t* c; if (instance_id == 0) c = (uint8_t*)&configuration.dexed[0]; else c = (uint8_t*)&configuration.dexed[1]; for (uint16_t i = 0; i < sizeof(configuration.dexed[instance_id]); i++) { if (instance_id == 0) EEPROM.update(EEPROM_START_ADDRESS + offsetof(configuration_s, dexed[0]) + i, c[i]); else EEPROM.update(EEPROM_START_ADDRESS + offsetof(configuration_s, dexed[1]) + i, c[i]); } #endif #ifdef DEBUG Serial.print(F("Updating EEPROM dexed (instance ")); Serial.print(instance_id); Serial.println(F(").")); #endif } bool eeprom_get_dexed(uint8_t instance_id) { for (uint8_t instance_id = 0; instance_id < MAX_DEXED; instance_id++) { if (instance_id == 0) EEPROM.get(EEPROM_START_ADDRESS + offsetof(configuration_s, dexed[0]), configuration.dexed[0]); else EEPROM.get(EEPROM_START_ADDRESS + offsetof(configuration_s, dexed[1]), configuration.dexed[1]); } return (true); } void eeprom_update_performance() { EEPROM.put(EEPROM_START_ADDRESS + offsetof(configuration_s, performance), configuration.performance); #ifdef DEBUG Serial.println(F("Updating EEPROM performance.")); #endif } bool eeprom_get_performance() { EEPROM.get(EEPROM_START_ADDRESS + offsetof(configuration_s, performance), configuration.performance); return (true); } /****************************************************************************** PARAMETER-HELPERS ******************************************************************************/ void set_fx_params(void) { #if defined(USE_FX) for (uint8_t instance_id = 0; instance_id < NUM_DEXED; instance_id++) { // CHORUS //chorus_mixer[instance_id]->gain(0, 1.0 - pseudo_log_curve(mapfloat(configuration.fx.chorus_level[instance_id], CHORUS_LEVEL_MIN, CHORUS_LEVEL_MAX, 0.0, 1.0), true)); //chorus_mixer[instance_id]->gain(1, pseudo_log_curve(mapfloat(configuration.fx.chorus_level[instance_id], CHORUS_LEVEL_MIN, CHORUS_LEVEL_MAX, 0.0, 1.0), true)); //chorus_mixer[instance_id]->gain(0, 1.0 - mapfloat(configuration.fx.chorus_level[instance_id], CHORUS_LEVEL_MIN, CHORUS_LEVEL_MAX, 0.0, 0.5)); chorus_mixer[instance_id]->gain(1, mapfloat(configuration.fx.chorus_level[instance_id], CHORUS_LEVEL_MIN, CHORUS_LEVEL_MAX, 0.0, 0.5)); switch (configuration.fx.chorus_waveform[instance_id]) { case 0: chorus_modulator[instance_id]->begin(WAVEFORM_TRIANGLE); break; case 1: chorus_modulator[instance_id]->begin(WAVEFORM_SINE); break; default: chorus_modulator[instance_id]->begin(WAVEFORM_TRIANGLE); } chorus_modulator[instance_id]->phase(0); chorus_modulator[instance_id]->frequency(configuration.fx.chorus_frequency[instance_id] / 10.0); chorus_modulator[instance_id]->amplitude(mapfloat(configuration.fx.chorus_depth[instance_id], CHORUS_DEPTH_MIN, CHORUS_DEPTH_MAX, 0.0, 1.0)); chorus_modulator[instance_id]->offset(0.0); #if MOD_FILTER_OUTPUT == MOD_BUTTERWORTH_FILTER_OUTPUT // Butterworth filter, 12 db/octave modchorus_filter[instance_id]->setLowpass(0, MOD_FILTER_CUTOFF_HZ, 0.707); #elif MOD_FILTER_OUTPUT == MOD_LINKWITZ_RILEY_FILTER_OUTPUT // Linkwitz-Riley filter, 48 dB/octave modchorus_filter[instance_id]->setLowpass(0, MOD_FILTER_CUTOFF_HZ, 0.54); modchorus_filter[instance_id]->setLowpass(1, MOD_FILTER_CUTOFF_HZ, 1.3); modchorus_filter[instance_id]->setLowpass(2, MOD_FILTER_CUTOFF_HZ, 0.54); modchorus_filter[instance_id]->setLowpass(3, MOD_FILTER_CUTOFF_HZ, 1.3); #endif // DELAY delay_mixer[instance_id]->gain(0, 1.0); delay_mixer[instance_id]->gain(1, mapfloat(configuration.fx.delay_level[instance_id], DELAY_LEVEL_MIN, DELAY_LEVEL_MAX, 0.0, 1.0)); delay_fx[instance_id]->delay(0, constrain(configuration.fx.delay_time[instance_id] * 10, DELAY_TIME_MIN, DELAY_TIME_MAX)); delay_fb_mixer[instance_id]->gain(0, 1.0); delay_fb_mixer[instance_id]->gain(1, mapfloat(configuration.fx.delay_feedback[instance_id], DELAY_FEEDBACK_MIN, DELAY_FEEDBACK_MAX, 0.0, 1.0)); // REVERB reverb_mixer_r.gain(instance_id, configuration.fx.reverb_send[instance_id] / 100.0); reverb_mixer_l.gain(instance_id, configuration.fx.reverb_send[instance_id] / 100.0); } // REVERB freeverb_r.roomsize(mapfloat(configuration.fx.reverb_roomsize, REVERB_ROOMSIZE_MIN, REVERB_ROOMSIZE_MAX, 0.0, 1.0)); freeverb_r.damping(mapfloat(configuration.fx.reverb_damping, REVERB_DAMPING_MIN, REVERB_DAMPING_MAX, 0.0, 1.0)); freeverb_l.roomsize(mapfloat(configuration.fx.reverb_roomsize, REVERB_ROOMSIZE_MIN, REVERB_ROOMSIZE_MAX, 0.0, 1.0)); freeverb_l.damping(mapfloat(configuration.fx.reverb_damping, REVERB_DAMPING_MIN, REVERB_DAMPING_MAX, 0.0, 1.0)); master_mixer_r.gain(3, configuration.fx.reverb_level / 100.0); master_mixer_l.gain(3, configuration.fx.reverb_level / 100.0); #endif } void set_voiceconfig_params(uint8_t instance_id) { // DEXED FILTER //MicroDexed[instance_id]->fx.Gain = mapfloat(configuration.dexed[instance_id].sound_intensity, SOUND_INTENSITY_MIN, SOUND_INTENSITY_MAX, 0.0, SOUND_INTENSITY_AMP_MAX); MicroDexed[instance_id]->fx.Gain = 1.0; MicroDexed[instance_id]->fx.Reso = mapfloat(configuration.dexed[instance_id].filter_resonance, FILTER_RESONANCE_MIN, FILTER_RESONANCE_MAX, 1.0, 0.0); MicroDexed[instance_id]->fx.Cutoff = mapfloat(configuration.dexed[instance_id].filter_cutoff, FILTER_CUTOFF_MIN, FILTER_CUTOFF_MAX, 1.0, 0.0); MicroDexed[instance_id]->doRefreshVoice(); // Dexed output level dexed_level[instance_id]->gain(mapfloat(configuration.dexed[instance_id].sound_intensity, SOUND_INTENSITY_MIN, SOUND_INTENSITY_MAX, 0.0, SOUND_INTENSITY_AMP_MAX)); // PANORAMA mono2stereo[instance_id]->panorama(mapfloat(configuration.dexed[instance_id].pan, PANORAMA_MIN, PANORAMA_MAX, -1.0, 1.0)); } void set_sys_params(void) { // set initial volume set_volume(configuration.sys.vol, configuration.sys.mono); } /****************************************************************************** HELPERS ******************************************************************************/ // https://www.reddit.com/r/Teensy/comments/7r19uk/reset_and_reboot_teensy_lc_via_code/ #define SCB_AIRCR (*(volatile uint32_t *)0xE000ED0C) // Application Interrupt and Reset Control location void _softRestart(void) { Serial.end(); //clears the serial monitor if used SCB_AIRCR = 0x05FA0004; //write value for restart } float pseudo_log_curve(float value, bool type) { const float _pseudo_log = 1048575 / (float)(1 << 20); if (type == true) return (_pseudo_log * arm_sin_f32(value)); else return (_pseudo_log * arm_cos_f32(value)); } uint32_t crc32(byte * calc_start, uint16_t calc_bytes) // base code from https://www.arduino.cc/en/Tutorial/EEPROMCrc { const uint32_t crc_table[16] = { 0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac, 0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c, 0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c, 0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c }; uint32_t crc = ~0L; for (byte* index = calc_start ; index < (calc_start + calc_bytes) ; ++index) { crc = crc_table[(crc ^ *index) & 0x0f] ^ (crc >> 4); crc = crc_table[(crc ^ (*index >> 4)) & 0x0f] ^ (crc >> 4); crc = ~crc; } return (crc); } void generate_version_string(char* buffer, uint8_t len) { char tmp[3]; memset(buffer, 0, len); strncat(buffer, VERSION, len); #if defined(TEENSY3_5) strncat(buffer, "-3.5", 4); #elif defined(TEENSY3_6) strncat(buffer, "-3.6", 4); #elif defined(TEENSY4) strncat(buffer, "-4.0", 4); #endif #if defined(USE_FX) strncat(buffer, "FX", 2); #endif #if defined(MAX_NOTES) strncat(buffer, "-", 1); itoa (MAX_NOTES, tmp, 10); strncat(buffer, tmp, 2); #endif } #ifdef DISPLAY_LCD_SPI void change_disp_sd(bool disp) { if (sd_card > 0) { digitalWrite(sd_card, disp); digitalWrite(U8X8_CS_PIN, !disp); } } #endif uint8_t check_sd_cards(void) { uint8_t ret = 0; memset(sd_string, 0, sizeof(sd_string)); for (uint8_t i = 0; i < sizeof(cs_pins); i++) { #ifdef DEBUG Serial.print(F("Checking CS pin ")); Serial.print(cs_pins[i], DEC); Serial.println(F(" for SD card")); #endif SPI.setMOSI(mosi_pins[i]); SPI.setSCK(sck_pins[i]); if (SD.begin(cs_pins[i]) == true) { #ifdef DEBUG Serial.print(F("Found. Using pin ")); Serial.println(cs_pins[i], DEC); #endif ret = cs_pins[i]; break; } } if (ret >= 0) { if (!card.init(SPI_HALF_SPEED, ret)) { #ifdef DEBUG Serial.println(F("SD card initialization failed.")); #endif ret = -1; } } if (ret >= 0) { #ifdef DEBUG Serial.print(F("Card type: ")); #endif switch (card.type()) { case SD_CARD_TYPE_SD1: sprintf(sd_string, "%-5s", "SD1"); #ifdef DEBUG Serial.println(F("SD1")); #endif break; case SD_CARD_TYPE_SD2: sprintf(sd_string, "%-5s", "SD2"); #ifdef DEBUG Serial.println(F("SD2")); #endif break; case SD_CARD_TYPE_SDHC: sprintf(sd_string, "%-5s", "SD2"); #ifdef DEBUG Serial.println(F("SDHC")); #endif break; default: sprintf(sd_string, "%-5s", "UKNW"); #ifdef DEBUG Serial.println(F("Unknown")); #endif } if (!volume.init(card)) { #ifdef DEBUG Serial.println(F("Could not find FAT16/FAT32 partition.")); #endif ret = -1; } } if (ret >= 0) { uint32_t volumesize; volumesize = volume.blocksPerCluster() * volume.clusterCount() / 2097152; #ifdef DEBUG Serial.print(F("Volume type is FAT")); Serial.println(volume.fatType(), DEC); Serial.print(F("Volume size (GB): ")); Serial.println(volumesize); #endif sprintf(sd_string + 5, "FAT%2d %02dGB", volume.fatType(), int(volumesize)); } #ifdef DEBUG Serial.println(sd_string); #endif return (ret); } void check_and_create_directories(void) { if (sd_card > 0) { uint8_t i; char tmp[FILENAME_LEN]; #ifdef DEBUG Serial.println(F("Directory check... ")); #endif // create directories for banks for (i = 0; i < MAX_BANKS; i++) { sprintf(tmp, "/%d", i); if (!SD.exists(tmp)) { #ifdef DEBUG Serial.print(F("Creating directory ")); Serial.println(tmp); #endif SD.mkdir(tmp); } } // create directories for confgiuration files sprintf(tmp, "/%s", VOICE_CONFIG_PATH); if (!SD.exists(tmp)) { #ifdef DEBUG Serial.print(F("Creating directory ")); Serial.println(tmp); #endif SD.mkdir(tmp); } sprintf(tmp, "/%s", PERFORMANCE_CONFIG_PATH); if (!SD.exists(tmp)) { #ifdef DEBUG Serial.print(F("Creating directory ")); Serial.println(tmp); #endif SD.mkdir(tmp); } sprintf(tmp, "/%s", FX_CONFIG_PATH); if (!SD.exists(tmp)) { #ifdef DEBUG Serial.print(F("Creating directory ")); Serial.println(tmp); #endif SD.mkdir(tmp); } } #ifdef DEBUG else Serial.println(F("No SD card for directory check available.")); #endif } /****************************************************************************** DEBUG HELPER ******************************************************************************/ #if defined (DEBUG) && defined (SHOW_CPU_LOAD_MSEC) void show_cpu_and_mem_usage(void) { uint32_t sum_xrun = 0; uint16_t sum_render_time_max = 0; uint32_t sum_overload = 0; for (uint8_t instance_id = 0; instance_id < NUM_DEXED; instance_id++) { sum_xrun += MicroDexed[instance_id]->xrun; sum_render_time_max += MicroDexed[instance_id]->render_time_max; sum_overload += MicroDexed[instance_id]->overload; MicroDexed[instance_id]->render_time_max = 0; } if (AudioProcessorUsageMax() > 99.9) { cpumax++; #ifdef DEBUG Serial.print(F("*")); #endif } #ifdef DEBUG else Serial.print(F(" ")); Serial.print(F("CPU:")); Serial.print(AudioProcessorUsage(), 2); Serial.print(F("%|CPUMAX:")); Serial.print(AudioProcessorUsageMax(), 2); Serial.print(F("%|CPUMAXCNT:")); Serial.print(cpumax, DEC); Serial.print(F("|MEM:")); Serial.print(AudioMemoryUsage(), DEC); Serial.print(F("|MEMMAX:")); Serial.print(AudioMemoryUsageMax(), DEC); Serial.print(F("|RENDERTIMEMAX:")); Serial.print(sum_render_time_max, DEC); Serial.print(F("|XRUN:")); Serial.print(sum_xrun, DEC); Serial.print(F("|OVERLOAD:")); Serial.println(sum_overload, DEC); Serial.print(F("PEAKR:")); Serial.print(peak_r, DEC); Serial.print(F("|PEAKL:")); Serial.print(peak_l, DEC); Serial.print(F("|PEAKMD:")); Serial.print(peak_dexed, DEC); Serial.print(F("|ACTPEAKMD:")); Serial.print(peak_dexed_value, 1); Serial.print(F("|BLOCKSIZE:")); Serial.print(AUDIO_BLOCK_SAMPLES, DEC); Serial.print(F("|ACTVOICES:")); for (uint8_t instance_id = 0; instance_id < NUM_DEXED; instance_id++) { Serial.print(instance_id, DEC); Serial.print(F("=")); Serial.print(active_voices[instance_id], DEC); if (instance_id != NUM_DEXED - 1) Serial.print(F(",")); } Serial.println(); #endif AudioProcessorUsageMaxReset(); AudioMemoryUsageMaxReset(); } #endif #ifdef DEBUG void show_configuration(void) { Serial.println(); Serial.println(F("CONFIGURATION:")); Serial.println(F("System")); Serial.print(F(" Instances ")); Serial.println(configuration.sys.instances, DEC); Serial.print(F(" Volume ")); Serial.println(configuration.sys.vol, DEC); Serial.print(F(" Mono ")); Serial.println(configuration.sys.mono, DEC); Serial.print(F(" Soft MIDI Thru ")); Serial.println(configuration.sys.soft_midi_thru, DEC); Serial.println(F("FX")); Serial.print(F(" Reverb Roomsize ")); Serial.println(configuration.fx.reverb_roomsize, DEC); Serial.print(F(" Reverb Damping ")); Serial.println(configuration.fx.reverb_damping, DEC); Serial.print(F(" Reverb Level ")); Serial.println(configuration.fx.reverb_level, DEC); for (uint8_t instance_id = 0; instance_id < NUM_DEXED; instance_id++) { Serial.print(F("Dexed instance ")); Serial.println(instance_id, DEC); Serial.print(F(" MIDI-Channel ")); Serial.println(configuration.dexed[instance_id].midi_channel, DEC); Serial.print(F(" Lowest Note ")); Serial.println(configuration.dexed[instance_id].lowest_note, DEC); Serial.print(F(" Highest Note ")); Serial.println(configuration.dexed[instance_id].highest_note, DEC); Serial.print(F(" Chorus Frequency ")); Serial.println(configuration.fx.chorus_frequency[instance_id], DEC); Serial.print(F(" Chorus Waveform ")); Serial.println(configuration.fx.chorus_waveform[instance_id], DEC); Serial.print(F(" Chorus Depth ")); Serial.println(configuration.fx.chorus_depth[instance_id], DEC); Serial.print(F(" Chorus Level ")); Serial.println(configuration.fx.chorus_level[instance_id], DEC); Serial.print(F(" Delay Time ")); Serial.println(configuration.fx.delay_time[instance_id], DEC); Serial.print(F(" Delay Feedback ")); Serial.println(configuration.fx.delay_feedback[instance_id], DEC); Serial.print(F(" Delay Level ")); Serial.println(configuration.fx.delay_level[instance_id], DEC); Serial.print(F(" Filter Cutoff ")); Serial.println(configuration.dexed[instance_id].filter_cutoff, DEC); Serial.print(F(" Filter Resonance ")); Serial.println(configuration.dexed[instance_id].filter_resonance, DEC); Serial.print(F(" Sound Intensity ")); Serial.println(configuration.dexed[instance_id].sound_intensity, DEC); Serial.print(F(" Panorama ")); Serial.println(configuration.dexed[instance_id].pan, DEC); Serial.print(F(" Transpose ")); Serial.println(configuration.dexed[instance_id].transpose, DEC); Serial.print(F(" Tune ")); Serial.println(configuration.dexed[instance_id].tune, DEC); Serial.print(F(" Polyphony ")); Serial.println(configuration.dexed[instance_id].polyphony, DEC); Serial.print(F(" Engine ")); Serial.println(configuration.dexed[instance_id].engine, DEC); Serial.print(F(" Mono/Poly ")); Serial.println(configuration.dexed[instance_id].monopoly, DEC); Serial.print(F(" Note Refresh ")); Serial.println(configuration.dexed[instance_id].note_refresh, DEC); Serial.print(F(" Pitchbend Range ")); Serial.println(configuration.dexed[instance_id].pb_range, DEC); Serial.print(F(" Pitchbend Step ")); Serial.println(configuration.dexed[instance_id].pb_step, DEC); Serial.print(F(" Modwheel Range ")); Serial.println(configuration.dexed[instance_id].mw_range, DEC); Serial.print(F(" Modwheel Assign ")); Serial.println(configuration.dexed[instance_id].mw_assign, DEC); Serial.print(F(" Modwheel Mode ")); Serial.println(configuration.dexed[instance_id].mw_mode, DEC); Serial.print(F(" Footctrl Range ")); Serial.println(configuration.dexed[instance_id].fc_range, DEC); Serial.print(F(" Footctrl Assign ")); Serial.println(configuration.dexed[instance_id].fc_assign, DEC); Serial.print(F(" Footctrl Mode ")); Serial.println(configuration.dexed[instance_id].fc_mode, DEC); Serial.print(F(" BreathCtrl Range ")); Serial.println(configuration.dexed[instance_id].bc_range, DEC); Serial.print(F(" Breathctrl Assign ")); Serial.println(configuration.dexed[instance_id].bc_assign, DEC); Serial.print(F(" Breathctrl Mode ")); Serial.println(configuration.dexed[instance_id].bc_mode, DEC); Serial.print(F(" Aftertouch Range ")); Serial.println(configuration.dexed[instance_id].at_range, DEC); Serial.print(F(" Aftertouch Assign ")); Serial.println(configuration.dexed[instance_id].at_assign, DEC); Serial.print(F(" Aftertouch Mode ")); Serial.println(configuration.dexed[instance_id].at_mode, DEC); Serial.print(F(" Portamento Mode ")); Serial.println(configuration.dexed[instance_id].portamento_mode, DEC); Serial.print(F(" Portamento Glissando ")); Serial.println(configuration.dexed[instance_id].portamento_glissando, DEC); Serial.print(F(" Portamento Time ")); Serial.println(configuration.dexed[instance_id].portamento_time, DEC); Serial.print(F(" OP Enabled ")); Serial.println(configuration.dexed[instance_id].op_enabled, DEC); Serial.flush(); } Serial.println(F("Performance")); for (uint8_t instance_id = 0; instance_id < NUM_DEXED; instance_id++) { Serial.print(F(" Bank ")); Serial.print(instance_id, DEC); Serial.print(" "); Serial.println(configuration.performance.bank[instance_id], DEC); Serial.print(F(" Voice ")); Serial.print(instance_id, DEC); Serial.print(" "); Serial.println(configuration.performance.voice[instance_id], DEC); } Serial.print(F(" FX-Number ")); Serial.println(configuration.performance.fx_number, DEC); Serial.println(); Serial.flush(); } void show_patch(uint8_t instance_id) { char vn[VOICE_NAME_LEN]; Serial.print(F("INSTANCE ")); Serial.println(instance_id, DEC); memset(vn, 0, sizeof(vn)); Serial.println(F("+==========================================================================================================+")); for (int8_t i = 5; i >= 0; --i) { Serial.println(F("+==========================================================================================================+")); Serial.print(F("| OP")); Serial.print(6 - i, DEC); Serial.println(F(" |")); Serial.println(F("+======+======+======+======+======+======+======+======+================+================+================+")); Serial.println(F("| R1 | R2 | R3 | R4 | L1 | L2 | L3 | L4 | LEV_SCL_BRK_PT | SCL_LEFT_DEPTH | SCL_RGHT_DEPTH |")); Serial.println(F("+------+------+------+------+------+------+------+------+----------------+----------------+----------------+")); Serial.print("| "); SerialPrintFormatInt3(MicroDexed[instance_id]->data[(i * 21) + DEXED_OP_EG_R1]); Serial.print(F(" | ")); SerialPrintFormatInt3(MicroDexed[instance_id]->data[(i * 21) + DEXED_OP_EG_R2]); Serial.print(F(" | ")); SerialPrintFormatInt3(MicroDexed[instance_id]->data[(i * 21) + DEXED_OP_EG_R3]); Serial.print(F(" | ")); SerialPrintFormatInt3(MicroDexed[instance_id]->data[(i * 21) + DEXED_OP_EG_R4]); Serial.print(F(" | ")); SerialPrintFormatInt3(MicroDexed[instance_id]->data[(i * 21) + DEXED_OP_EG_L1]); Serial.print(F(" | ")); SerialPrintFormatInt3(MicroDexed[instance_id]->data[(i * 21) + DEXED_OP_EG_L2]); Serial.print(F(" | ")); SerialPrintFormatInt3(MicroDexed[instance_id]->data[(i * 21) + DEXED_OP_EG_L3]); Serial.print(F(" | ")); SerialPrintFormatInt3(MicroDexed[instance_id]->data[(i * 21) + DEXED_OP_EG_L4]); Serial.print(F(" | ")); SerialPrintFormatInt3(MicroDexed[instance_id]->data[(i * 21) + DEXED_OP_LEV_SCL_BRK_PT]); Serial.print(F(" | ")); SerialPrintFormatInt3(MicroDexed[instance_id]->data[(i * 21) + DEXED_OP_SCL_LEFT_DEPTH]); Serial.print(F(" | ")); SerialPrintFormatInt3(MicroDexed[instance_id]->data[(i * 21) + DEXED_OP_SCL_RGHT_DEPTH]); Serial.println(F(" |")); Serial.println(F("+======+======+======+======+======+===+==+==+===+======+====+========+==+====+=======+===+================+")); Serial.println(F("| SCL_L_CURVE | SCL_R_CURVE | RT_SCALE | AMS | KVS | OUT_LEV | OP_MOD | FRQ_C | FRQ_F | DETUNE |")); Serial.println(F("+-------------+-------------+----------+-----+-----+---------+--------+-------+-------+--------------------+")); Serial.print(F("| ")); SerialPrintFormatInt3(MicroDexed[instance_id]->data[(i * 21) + DEXED_OP_SCL_LEFT_CURVE]); Serial.print(F(" | ")); SerialPrintFormatInt3(MicroDexed[instance_id]->data[(i * 21) + DEXED_OP_SCL_RGHT_CURVE]); Serial.print(F(" | ")); SerialPrintFormatInt3(MicroDexed[instance_id]->data[(i * 21) + DEXED_OP_OSC_RATE_SCALE]); Serial.print(F(" |")); SerialPrintFormatInt3(MicroDexed[instance_id]->data[(i * 21) + DEXED_OP_AMP_MOD_SENS]); Serial.print(F(" |")); SerialPrintFormatInt3(MicroDexed[instance_id]->data[(i * 21) + DEXED_OP_KEY_VEL_SENS]); Serial.print(F(" | ")); SerialPrintFormatInt3(MicroDexed[instance_id]->data[(i * 21) + DEXED_OP_OUTPUT_LEV]); Serial.print(F(" | ")); SerialPrintFormatInt3(MicroDexed[instance_id]->data[(i * 21) + DEXED_OP_OSC_MODE]); Serial.print(F(" | ")); SerialPrintFormatInt3(MicroDexed[instance_id]->data[(i * 21) + DEXED_OP_FREQ_COARSE]); Serial.print(F(" | ")); SerialPrintFormatInt3(MicroDexed[instance_id]->data[(i * 21) + DEXED_OP_FREQ_FINE]); Serial.print(F(" | ")); SerialPrintFormatInt3(MicroDexed[instance_id]->data[(i * 21) + DEXED_OP_OSC_DETUNE]); Serial.println(F(" |")); } Serial.println(F("+=======+=====+=+=======+===+===+======++====+==+==+====+====+==+======+======+=====+=+====================+")); Serial.println(F("| PR1 | PR2 | PR3 | PR4 | PL1 | PL2 | PL3 | PL4 | ALG | FB | OKS | TRANSPOSE |")); Serial.println(F("+-------+-------+-------+-------+-------+-------+-------+-------+------+------+-----+----------------------+")); Serial.print(F("| ")); for (int8_t i = 0; i < 8; i++) { SerialPrintFormatInt3(MicroDexed[instance_id]->data[DEXED_VOICE_OFFSET + i]); Serial.print(F(" | ")); } SerialPrintFormatInt3(MicroDexed[instance_id]->data[DEXED_VOICE_OFFSET + DEXED_ALGORITHM]); Serial.print(F(" | ")); SerialPrintFormatInt3(MicroDexed[instance_id]->data[DEXED_VOICE_OFFSET + DEXED_FEEDBACK]); Serial.print(F(" |")); SerialPrintFormatInt3(MicroDexed[instance_id]->data[DEXED_VOICE_OFFSET + DEXED_OSC_KEY_SYNC]); Serial.print(F(" | ")); SerialPrintFormatInt3(MicroDexed[instance_id]->data[DEXED_VOICE_OFFSET + DEXED_TRANSPOSE]); Serial.println(F(" |")); Serial.println(F("+=======+=+=====+===+===+=====+=+=======+=======+==+====+=====+=+======++=====+=====+======================+")); Serial.println(F("| LFO SPD | LFO DLY | LFO PMD | LFO AMD | LFO SYNC | LFO WAVE | LFO PMS | NAME |")); Serial.println(F("+---------+---------+---------+---------+----------+----------+---------+----------------------------------+")); Serial.print(F("| ")); SerialPrintFormatInt3(MicroDexed[instance_id]->data[DEXED_VOICE_OFFSET + DEXED_LFO_SPEED]); Serial.print(F(" | ")); SerialPrintFormatInt3(MicroDexed[instance_id]->data[DEXED_VOICE_OFFSET + DEXED_LFO_DELAY]); Serial.print(F(" | ")); SerialPrintFormatInt3(MicroDexed[instance_id]->data[DEXED_VOICE_OFFSET + DEXED_LFO_PITCH_MOD_DEP]); Serial.print(F(" | ")); SerialPrintFormatInt3(MicroDexed[instance_id]->data[DEXED_VOICE_OFFSET + DEXED_LFO_AMP_MOD_DEP]); Serial.print(F(" | ")); SerialPrintFormatInt3(MicroDexed[instance_id]->data[DEXED_VOICE_OFFSET + DEXED_LFO_SYNC]); Serial.print(F(" | ")); SerialPrintFormatInt3(MicroDexed[instance_id]->data[DEXED_VOICE_OFFSET + DEXED_LFO_WAVE]); Serial.print(F(" | ")); SerialPrintFormatInt3(MicroDexed[instance_id]->data[DEXED_VOICE_OFFSET + DEXED_LFO_PITCH_MOD_SENS]); Serial.print(F(" | ")); strncpy(vn, (char *)&MicroDexed[instance_id]->data[DEXED_VOICE_OFFSET + DEXED_NAME], VOICE_NAME_LEN - 1); Serial.print(vn); Serial.println(F(" |")); Serial.println(F("+=========+=========+=========+=========+==========+==========+=========+==================================+")); Serial.println(F("+==========================================================================================================+")); } void SerialPrintFormatInt3(uint8_t num) { char buf[4]; sprintf(buf, "%3d", num); Serial.print(buf); } #endif