/* Copyright (C) 2015-2017 Pascal Gauthier. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA The code is based on ppplay https://github.com/stohrendorf/ppplay and opl3 math documentation : https://github.com/gtaylormb/opl3_fpga/blob/master/docs/opl3math/opl3math.pdf */ #include "EngineMkI.h" #define _USE_MATH_DEFINES #include #include #include "sin.h" #include "exp2.h" #ifdef DEBUG #include "time.h" //#define MKIDEBUG #endif #ifdef _WIN32 #if _MSC_VER < 1800 FRAC_NUM log2(FRAC_NUM n) { //return log(n) / log(2.0); return LOG_FUNC(n) / LOG_FUNC(2.0); } FRAC_NUM round(FRAC_NUM n) { return n < 0.0 ? ceil(n - 0.5) : floor(n + 0.5); } #endif __declspec(align(16)) const int zeros[N] = {0}; #else const int32_t __attribute__ ((aligned(16))) zeros[_N_] = {0}; #endif static const uint16_t NEGATIVE_BIT = 0x8000; static const uint16_t ENV_BITDEPTH = 14; static const uint16_t SINLOG_BITDEPTH = 10; static const uint16_t SINLOG_TABLESIZE = 1 << SINLOG_BITDEPTH; static uint16_t sinLogTable[SINLOG_TABLESIZE]; static const uint16_t SINEXP_BITDEPTH = 10; static const uint16_t SINEXP_TABLESIZE = 1 << SINEXP_BITDEPTH; static uint16_t sinExpTable[SINEXP_TABLESIZE]; const uint16_t ENV_MAX = 1 << ENV_BITDEPTH; static inline uint16_t sinLog(uint16_t phi) { const uint16_t SINLOG_TABLEFILTER = SINLOG_TABLESIZE - 1; const uint16_t index = (phi & SINLOG_TABLEFILTER); switch ( ( phi & (SINLOG_TABLESIZE * 3) ) ) { case 0: return sinLogTable[index]; case SINLOG_TABLESIZE: return sinLogTable[index ^ SINLOG_TABLEFILTER]; case SINLOG_TABLESIZE * 2 : return sinLogTable[index] | NEGATIVE_BIT; default: return sinLogTable[index ^ SINLOG_TABLEFILTER] | NEGATIVE_BIT; } } EngineMkI::EngineMkI() { float bitReso = SINLOG_TABLESIZE; for (int i = 0; i < SINLOG_TABLESIZE; i++) { //float x1 = sin(((0.5+i)/bitReso) * M_PI/2.0); float x1 = SIN_FUNC(((0.5 + i) / bitReso) * M_PI / 2.0); sinLogTable[i] = round(-1024 * log2(x1)); } bitReso = SINEXP_TABLESIZE; for (int i = 0; i < SINEXP_TABLESIZE; i++) { float x1 = (pow(2, float(i) / bitReso) - 1) * 4096; sinExpTable[i] = round(x1); } #ifdef MKIDEBUG char buffer[4096]; int pos = 0; for (int i = 0; i < SINLOG_TABLESIZE; i++) { pos += sprintf(buffer + pos, "%d ", sinLogTable[i]); if ( pos > 90 ) { buffer[0] = 0; pos = 0; } } buffer[0] = 0; pos = 0; for (int i = 0; i < SINEXP_TABLESIZE; i++) { pos += sprintf(buffer + pos, "%d ", sinExpTable[i]); if ( pos > 90 ) { buffer[0] = 0; pos = 0; } } #endif } inline int32_t mkiSin(int32_t phase, uint16_t env) { uint16_t expVal = sinLog(phase >> (22 - SINLOG_BITDEPTH)) + (env); //int16_t expValShow = expVal; const bool isSigned = expVal & NEGATIVE_BIT; expVal &= ~NEGATIVE_BIT; const uint16_t SINEXP_FILTER = 0x3FF; uint16_t result = 4096 + sinExpTable[( expVal & SINEXP_FILTER ) ^ SINEXP_FILTER]; //uint16_t resultB4 = result; result >>= ( expVal >> 10 ); // exp #ifdef MKIDEBUG if ( ( time(NULL) % 5 ) == 0 ) { if ( expValShow < 0 ) { expValShow = (expValShow + 0x7FFF) * -1; } } #endif if ( isSigned ) return (-result - 1) << 13; else return result << 13; } void EngineMkI::compute(int32_t *output, const int32_t *input, int32_t phase0, int32_t freq, int32_t gain1, int32_t gain2, bool add) { int32_t dgain = (gain2 - gain1 + (_N_ >> 1)) >> LG_N; int32_t gain = gain1; int32_t phase = phase0; const int32_t *adder = add ? output : zeros; for (int i = 0; i < _N_; i++) { gain += dgain; int32_t y = mkiSin((phase + input[i]), gain); output[i] = y + adder[i]; phase += freq; } } void EngineMkI::compute_pure(int32_t *output, int32_t phase0, int32_t freq, int32_t gain1, int32_t gain2, bool add) { int32_t dgain = (gain2 - gain1 + (_N_ >> 1)) >> LG_N; int32_t gain = gain1; int32_t phase = phase0; const int32_t *adder = add ? output : zeros; for (int i = 0; i < _N_; i++) { gain += dgain; int32_t y = mkiSin(phase , gain); output[i] = y + adder[i]; phase += freq; } } void EngineMkI::compute_fb(int32_t *output, int32_t phase0, int32_t freq, int32_t gain1, int32_t gain2, int32_t *fb_buf, int fb_shift, bool add) { int32_t dgain = (gain2 - gain1 + (_N_ >> 1)) >> LG_N; int32_t gain = gain1; int32_t phase = phase0; const int32_t *adder = add ? output : zeros; int32_t y0 = fb_buf[0]; int32_t y = fb_buf[1]; for (int i = 0; i < _N_; i++) { gain += dgain; int32_t scaled_fb = (y0 + y) >> (fb_shift + 1); y0 = y; y = mkiSin((phase + scaled_fb), gain); output[i] = y + adder[i]; phase += freq; } fb_buf[0] = y0; fb_buf[1] = y; } // exclusively used for ALGO 6 with feedback void EngineMkI::compute_fb2(int32_t *output, FmOpParams *parms, int32_t gain01, int32_t gain02, int32_t *fb_buf, int fb_shift) { int32_t dgain[2]; int32_t gain[2]; int32_t phase[2]; int32_t y0 = fb_buf[0]; int32_t y = fb_buf[1]; phase[0] = parms[0].phase; phase[1] = parms[1].phase; parms[1].gain_out = (ENV_MAX - (parms[1].level_in >> (28 - ENV_BITDEPTH))); gain[0] = gain01; gain[1] = parms[1].gain_out == 0 ? (ENV_MAX - 1) : parms[1].gain_out; dgain[0] = (gain02 - gain01 + (_N_ >> 1)) >> LG_N; dgain[1] = (parms[1].gain_out - (parms[1].gain_out == 0 ? (ENV_MAX - 1) : parms[1].gain_out)); for (int i = 0; i < _N_; i++) { int32_t scaled_fb = (y0 + y) >> (fb_shift + 1); // op 0 gain[0] += dgain[0]; y0 = y; y = mkiSin(phase[0] + scaled_fb, gain[0]); phase[0] += parms[0].freq; // op 1 gain[1] += dgain[1]; y = mkiSin(phase[1] + y, gain[1]); phase[1] += parms[1].freq; output[i] = y; } fb_buf[0] = y0; fb_buf[1] = y; } // exclusively used for ALGO 4 with feedback void EngineMkI::compute_fb3(int32_t *output, FmOpParams *parms, int32_t gain01, int32_t gain02, int32_t *fb_buf, int fb_shift) { int32_t dgain[3]; int32_t gain[3]; int32_t phase[3]; int32_t y0 = fb_buf[0]; int32_t y = fb_buf[1]; phase[0] = parms[0].phase; phase[1] = parms[1].phase; phase[2] = parms[2].phase; parms[1].gain_out = (ENV_MAX - (parms[1].level_in >> (28 - ENV_BITDEPTH))); parms[2].gain_out = (ENV_MAX - (parms[2].level_in >> (28 - ENV_BITDEPTH))); gain[0] = gain01; gain[1] = parms[1].gain_out == 0 ? (ENV_MAX - 1) : parms[1].gain_out; gain[2] = parms[2].gain_out == 0 ? (ENV_MAX - 1) : parms[2].gain_out; dgain[0] = (gain02 - gain01 + (_N_ >> 1)) >> LG_N; dgain[1] = (parms[1].gain_out - (parms[1].gain_out == 0 ? (ENV_MAX - 1) : parms[1].gain_out)); dgain[2] = (parms[2].gain_out - (parms[2].gain_out == 0 ? (ENV_MAX - 1) : parms[2].gain_out)); for (int i = 0; i < _N_; i++) { int32_t scaled_fb = (y0 + y) >> (fb_shift + 1); // op 0 gain[0] += dgain[0]; y0 = y; y = mkiSin(phase[0] + scaled_fb, gain[0]); phase[0] += parms[0].freq; // op 1 gain[1] += dgain[1]; y = mkiSin(phase[1] + y, gain[1]); phase[1] += parms[1].freq; // op 2 gain[2] += dgain[2]; y = mkiSin(phase[2] + y, gain[2]); phase[2] += parms[2].freq; output[i] = y; } fb_buf[0] = y0; fb_buf[1] = y; } void EngineMkI::render(int32_t *output, FmOpParams *params, int algorithm, int32_t *fb_buf, int32_t feedback_shift) { const int kLevelThresh = ENV_MAX - 100; FmAlgorithm alg = algorithms[algorithm]; bool has_contents[3] = { true, false, false }; bool fb_on = feedback_shift < 16; switch (algorithm) { case 3 : case 5 : if ( fb_on ) alg.ops[0] = 0xc4; } for (int op = 0; op < 6; op++) { int flags = alg.ops[op]; bool add = (flags & OUT_BUS_ADD) != 0; FmOpParams ¶m = params[op]; int inbus = (flags >> 4) & 3; int outbus = flags & 3; int32_t *outptr = (outbus == 0) ? output : buf_[outbus - 1].get(); int32_t gain1 = param.gain_out == 0 ? (ENV_MAX - 1) : param.gain_out; int32_t gain2 = ENV_MAX - (param.level_in >> (28 - ENV_BITDEPTH)); param.gain_out = gain2; if (gain1 <= kLevelThresh || gain2 <= kLevelThresh) { if (!has_contents[outbus]) { add = false; } if (inbus == 0 || !has_contents[inbus]) { // PG: this is my 'dirty' implementation of FB for 2 and 3 operators... if ((flags & 0xc0) == 0xc0 && fb_on) { switch ( algorithm ) { // three operator feedback, process exception for ALGO 4 case 3 : compute_fb3(outptr, params, gain1, gain2, fb_buf, min((feedback_shift + 2), 16)); params[1].phase += params[1].freq << LG_N; // hack, we already processed op-5 - op-4 params[2].phase += params[2].freq << LG_N; // yuk yuk op += 2; // ignore the 2 other operators break; // two operator feedback, process exception for ALGO 6 case 5 : compute_fb2(outptr, params, gain1, gain2, fb_buf, min((feedback_shift + 2), 16)); params[1].phase += params[1].freq << LG_N; // yuk, hack, we already processed op-5 op++; // ignore next operator; break; default: // one operator feedback, normal proces compute_fb(outptr, param.phase, param.freq, gain1, gain2, fb_buf, feedback_shift, add); break; } } else { compute_pure(outptr, param.phase, param.freq, gain1, gain2, add); } } else { compute(outptr, buf_[inbus - 1].get(), param.phase, param.freq, gain1, gain2, add); } has_contents[outbus] = true; } else if (!add) { has_contents[outbus] = false; } param.phase += param.freq << LG_N; } }