/* Audio Library for Teensy 3.X * Copyright (c) 2014, Paul Stoffregen, paul@pjrc.com * * Development of this audio library was funded by PJRC.COM, LLC by sales of * Teensy and Audio Adaptor boards. Please support PJRC's efforts to develop * open source software by purchasing Teensy or other PJRC products. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice, development funding notice, and this permission * notice shall be included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #ifndef synth_dc_f32_h_ #define synth_dc_f32_h_ #include "Arduino.h" #include "AudioStream_f32.h" #include "utility/dspinst.h" #include "arm_math.h" // compute (a - b) / c // handling 32 bit interger overflow at every step // without resorting to slow 64 bit math class AudioSynthWaveformDc_F32 : public AudioStream_F32 { public: AudioSynthWaveformDc_F32() : AudioStream_F32(0, NULL), state(0), magnitude(0) {} // immediately jump to the new DC level void amplitude(float n) { if (n > 1.0) n = 1.0; else if (n < -1.0) n = -1.0; // int i; // int32_t m = (int32_t)(n * 0x7fff); __disable_irq(); magnitude = n; state = 0; // incblock = allocate_f32(); // for(i=0;idata[i]=i+1; __enable_irq(); } // slowly transition to the new DC level void amplitude(float n, float milliseconds) { if (milliseconds <= 0.0) { amplitude(n); return; } if (n > 1.0) n = 1.0; else if (n < -1.0) n = -1.0; float c = (milliseconds*(AUDIO_SAMPLE_RATE_EXACT/1000.0)); if (c == 0) { amplitude(n); return; } // int32_t t = (int32_t)(n * 0x7fff); __disable_irq(); target = n; if (target == magnitude) { state = 0; __enable_irq(); return; } increment = (target-magnitude)/ c; if (increment == 0) { increment = (target > magnitude) ? 1 : -1; } state = 1; __enable_irq(); } float read(void) { return magnitude; } virtual void update(void); private: uint8_t state; // 0=steady output, 1=transitioning float magnitude; // current output float target; // designed output (while transitiong) float increment; // adjustment per sample (while transitiong) // audio_block_f32_t *incblock; }; #endif