Contents

Style Guide

Overview e

general notes
Naming o e
Type Names.
Function Names
Variable Names
Constant Names
ENUINS . . . v v v e e e e e e e e e e e e e e

Tab Size
allman braces
using const references for arguments00
inline markdown comments 0L
circular dependency avoidance
Example files
DaisySP module L o

Style Guide

e overview
e general notes
— underscore separators
— tab size
— allman braces
— using const reference arguments*
— constant names
— trailing underscores for private member variables
— inline markdown comments
— circular dependency avoidance
— enum definitions™*
o Misc.
o Example
— daisysp module

* still being discussed, not strictly followed yet.

[N

CU O UL i W W WhhNDNDNND NN

Overview
general notes

Naming
Type Names

Type names should begin with a capital letter, and have a capital letter at the
start of each word. Compound words (i.e. Id, Callback, etc.) should only have a
single capital letter.

Function Names

Function names should begin with a capital letter, and have a capital letter at
the start of each word. Compound words (i.e. Id, Callback, etc.) should only
have a single capital letter.

Variable Names

all variable names use underscores as a separator, and contain only lower case
letters.

trailing underscores for private member variables

to prevent name clashes with function arguments and/or names, trailing under-
scores will be used for private member variables.

ex.

private:
float foo_;

Constant Names

consts, whether class members or not, should be prefixed with, ‘k’ and use capital
letters at the beginning of each word.

For example, float kConstantName = 1.542

enums
This may still change

for now, we're putting enums outside the class with a MODULENAME prefix so
that enums can be directly accessed without having to use the C++ syntax
namespaces for them.

Enums are also currently not given type names to prevent issues when casting
from standard types.

trailing commas are used at the end of every line of an enum definition including
the last.

MODULENAME_ENUM_LAST is always used to have a valid “number of values” that
can be used when dealing with the enum.

€x.

enum
MODULENAME_STATE_FQO,
MODULENAME_STATE_BAR,

MODULENAME_STATE_LAST,
};

This can be accessed simply by state = MODULENAME_STATE_FOO;

alternatively we may change this so that it doesn’t use a text-based namespace
prefix, and move it within the class so that access would then be:

state = ModuleName: :STATE_F0O;
This is still in discussion.

Giving enums named types is also a point of discussion, all though when moving
between types it may not be very user friendly to have to:

// somewhere in init

uint8_t val = 0;

// somewhere being called periodically
if (buttonl.rising_edge())

{
val = (val + 1) % OSC_WAVEFORM_LAST;
osc.set_waveform(static_cast<osc_waveform>(val));
}
Misc
Tab Size

A tab = 4 spaces

allman braces
We use allman style braces for both libraries.

// So functions look like:
void do_something()

{

foo = bar;

}

// instead of:
void do_something() {
foo = bar;

}

this permits easier copy/paste when creating new modules, but also makes visual
levels of indentation a little easier to see while working/reading code.

When used with if statements this also makes it very easy to comment out
different logic statements, or even remove them for testing without having to
worry about moving braces around.

using const references for arguments
inline float Process(const float &in) { return DoSomething(in * 0.5f); }

When an argument can be expected to come from a stored value (variable, etc.)
a const reference should be used.

When it makes sense, pass values by reference, and to ensure that the imple-
mentation cannot change the value coming in, they should be passed in with
the const qualifier. As a result any attempt to unintentionally change the input
value will cause an error during compilation.

Previously we had this rule primarily for setters, but on simple parameters
its common to enter a value directly (with no memory address), which is not
possible when passing by reference.

Process() functions that operate on an input are a good example of when to use
this.

This is a new rule, and there are several modules that don’t follow it
exactly right now.

inline markdown comments

Header files are parsed with a simple python script to generate reference docu-
mentation.

The parser checks for comments, and will generate markdown for any such lines.

There needs to be a blank comment line in between lines that require a line
break in the output. Otherwise, consecutive lines will be treated as a single line
in the markdown file.

ex.

// # Here's a mew section
// With some text
//

// This will be on a newline,
// but this will be added to the previous.
/7
// Put the following around code you wish to export into the documentation:
J) e~
void some_function();

J) e~

circular dependency avoidance

We use both #pragma once and header guards to prevent circular includes, and
similar issues that can arise without such a mechanism.

These should be used in all header files added to the libraries.

Naming convention for the header guards should be: DSY_MODULENAME_H where
MODULENAME is the file/class name.

Example files
DaisySP module
Header:

// # Markdoun Title
// Description

/7
// Details

#pragma once
#ifndef DSY_MODULENAME_H
#define DSY_MODULENAME_H

namespace daisysp

{

enum state

{
MODULENAME_STATE_A,
MODULENAME_STATE_B,
MODULENAME_LAST,

};

class ModuleName

{
public:
ModuleName () {}
~ModuleName () {}

void Init();
float Process(const float &in);
inline void SetParam(const float ¶m) { param_ = param; }
void SetComplexParam(const float &complex_param);
private:
float param_;
float foo_bar_;
float a_, b_;
3
} // namespace daisysp

#endif // DSY_MODULENAME_H
Implementation:

#include <system_include.h>
#include "modulename.h"

using namespace daisysp;

void ModuleName: :Init()

{
// Set private members to defaults
param_ = 0.0f;
a_ = 0.0f;
b_ = 1.0f;
// Do stuff
¥
float ModuleName: :Process(const float &in)
{
// Do something and return the output.
return (in * param_) + a_ - b_;
¥

void ModuleName: :SetComplexParam(const float &complex_param)

a_ = complex_param;
= 1.0f - complex_param;

o
|

	Style Guide
	Overview

	general notes
	Naming
	Type Names
	Function Names
	Variable Names
	Constant Names
	enums

	Misc
	Tab Size
	allman braces
	using const references for arguments
	inline markdown comments
	circular dependency avoidance

	Example files
	DaisySP module

