/* MicroMDAEPiano MicroMDAEPiano is a port of the MDA-EPiano sound engine (https://sourceforge.net/projects/mda-vst/) for the Teensy-3.5/3.6 with audio shield. (c)2019 H. Wirtz This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "config.h" #include #include #include #include #include #include #include "mod-delay-gain.h" #include "mdaEPiano.h" #ifdef USE_XFADE_DATA #include "mdaEPianoDataXfade.h" #else #include "mdaEPianoData.h" #endif #if defined(MIDI_DEVICE_USB) #include #endif #ifdef MIDI_DEVICE_USB_HOST #include #endif #include #include "Encoder4.h" #include "LiquidCrystalPlus_I2C.h" #include "UI.h" //************************************************************************************************* //* GLOBAL VARIABLES //************************************************************************************************* // Audio configuration AudioPlayQueue queue_r; AudioPlayQueue queue_l; AudioAnalyzePeak peak_r; AudioAnalyzePeak peak_l; AudioEffectFreeverb freeverb_r; AudioEffectFreeverb freeverb_l; AudioMixer4 mixer_r; AudioMixer4 mixer_l; AudioSynthWaveform delaySweep_r; AudioSynthWaveform envelope_r; AudioSynthWaveform delaySweep_l; AudioSynthWaveform envelope_l; AudioEffectModDelayGain modulatedDelay_r; AudioEffectModDelayGain modulatedDelay_l; AudioConnection patchCord0(queue_r, peak_r); AudioConnection patchCord1(queue_l, peak_l); AudioConnection patchCord4(queue_r, freeverb_r); AudioConnection patchCord5(queue_l, freeverb_l); AudioConnection patchCord6(queue_r, modulatedDelay_r); AudioConnection patchCord7(queue_l, modulatedDelay_l); AudioConnection patchCord8(queue_r, 0, mixer_r, 0); AudioConnection patchCord9(queue_l, 0, mixer_l, 0); AudioConnection patchCord10(freeverb_r, 0, mixer_r, 1); AudioConnection patchCord11(freeverb_l, 0, mixer_l, 1); AudioConnection patchCord12(modulatedDelay_r, 0, mixer_r, 2); AudioConnection patchCord13(modulatedDelay_l, 0, mixer_l, 2); AudioConnection patchCord14(delaySweep_r, 0, modulatedDelay_r, 1); AudioConnection patchCord15(delaySweep_l, 0, modulatedDelay_l, 1); AudioConnection patchCord16(envelope_r, 0, modulatedDelay_r, 2); AudioConnection patchCord17(envelope_l, 0, modulatedDelay_l, 2); #ifdef TEENSY_AUDIO_BOARD AudioOutputI2S i2s1; AudioConnection patchCord18(mixer_r, 0, i2s1, 0); AudioConnection patchCord19(mixer_l, 0, i2s1, 1); AudioControlSGTL5000 sgtl5000_1; #else AudioOutputPT8211 pt8211_1; AudioAmplifier volume_r; AudioAmplifier volume_l; AudioConnection patchCord18(mixer_r, volume_r); AudioConnection patchCord19(mixer_l, volume_l); AudioConnection patchCord20(volume_r, 0, pt8211_1, 1); AudioConnection patchCord21(volume_l, 0, pt8211_1, 0); #endif const int32_t delayBufferLength = 4500; int16_t delayBuf1[delayBufferLength]; int16_t delayBuf2[delayBufferLength]; // Objects mdaEPiano* ep; #ifdef MIDI_DEVICE_DIN MIDI_CREATE_INSTANCE(HardwareSerial, MIDI_DEVICE_DIN, midi_serial); #endif #ifdef MIDI_DEVICE_USB_HOST USBHost usb_host; MIDIDevice midi_usb(usb_host); #endif #ifdef MIDI_DEVICE_USB static const unsigned sUsbTransportBufferSize = 16; typedef midi::UsbTransport UsbTransport; UsbTransport sUsbTransport; MIDI_CREATE_INSTANCE(UsbTransport, sUsbTransport, midi_onboard_usb); #endif // Variables uint8_t midi_channel = DEFAULT_MIDI_CHANNEL; uint32_t xrun = 0; uint32_t overload = 0; uint32_t peak = 0; uint16_t render_time_max = 0; float vol = VOLUME; float vol_right = 1.0; float vol_left = 1.0; elapsedMicros fill_audio_buffer; const uint16_t audio_block_time_us = 1000000 / (SAMPLE_RATE / AUDIO_BLOCK_SAMPLES); #ifdef SHOW_CPU_LOAD_MSEC elapsedMillis cpu_mem_millis; #endif float modFreq = 2.0; enum MDA_EP_PARAM { DECAY, RELEASE, HARDNESS, TREBLE, PAN_TREM, LFO_RATE, VELOCITY_SENSE, STEREO, MAX_POLY, TUNE, DETUNE, OVERDRIVE }; //************************************************************************************************* //* SETUP FUNCTION //************************************************************************************************* void setup() { //while (!Serial) ; // wait for Arduino Serial Monitor Serial.begin(SERIAL_SPEED); delay(220); /* // LCD display setup lcd.init(); lcd.blink_off(); lcd.cursor_off(); lcd.backlight(); lcd.noAutoscroll(); lcd.clear(); lcd.display(); lcd.show(0, 0, 20, " MicroMDAEPiano"); lcd.show(1, 0, 16, "(c)parasiTstudio"); // Encoder setup enc[0].write(INITIAL_ENC_L_VALUE); enc_val[0] = enc[0].read(); enc[1].write(INITIAL_ENC_R_VALUE); enc_val[1] = enc[1].read(); but[0].update(); but[1].update(); */ // Debug output Serial.println(F("MicroMDAEPiano based on https://sourceforge.net/projects/mda-vst")); Serial.println(F("(c)2018 H. Wirtz ")); Serial.println(F("https://codeberg.org/dcoredump/MicroMDAEpiano")); Serial.print(F("Data in PROGMEM: ")); Serial.print(sizeof(epianoDataXfade), DEC); Serial.println(F(" bytes")); Serial.println(); Serial.println(F("")); // create EPiano object ep = new mdaEPiano(); // read initial EEPROM variables initial_values_from_eeprom(); // start up USB host #ifdef MIDI_DEVICE_USB_HOST usb_host.begin(); Serial.println(F("MIDI_DEVICE_USB_HOST enabled.")); #endif // check for onboard USB-MIDI #ifdef MIDI_DEVICE_USB midi_onboard_usb.begin(); Serial.println(F("MIDI_DEVICE_USB enabled.")); #endif #ifdef MIDI_DEVICE_DIN // Start serial MIDI midi_serial.begin(DEFAULT_MIDI_CHANNEL); Serial.println(F("MIDI_DEVICE_DIN enabled")); #endif // start audio card AudioNoInterrupts(); AudioMemory(AUDIO_MEM); #ifdef TEENSY_AUDIO_BOARD sgtl5000_1.enable(); //sgtl5000_1.dacVolumeRamp(); sgtl5000_1.dacVolumeRampLinear(); sgtl5000_1.unmuteHeadphone(); sgtl5000_1.unmuteLineout(); sgtl5000_1.autoVolumeDisable(); // turn off AGC sgtl5000_1.volume(1.0, 1.0); #endif //set_volume(vol, vol_left, vol_right); set_volume(1.0, 1.0, 1.0); #if defined (DEBUG) && defined (SHOW_CPU_LOAD_MSEC) // Initialize processor and memory measurements AudioProcessorUsageMaxReset(); AudioMemoryUsageMaxReset(); #endif Serial.print(F("AUDIO_BLOCK_SAMPLES=")); Serial.print(AUDIO_BLOCK_SAMPLES); Serial.print(F(" (Time per block=")); Serial.print(1000000 / (SAMPLE_RATE / AUDIO_BLOCK_SAMPLES)); Serial.println(F("ms)")); ep->setParameter(DECAY, 0.5); ep->setParameter(RELEASE, 0.5); ep->setParameter(HARDNESS, 0.7); ep->setParameter(TREBLE, 0.85); ep->setParameter(DETUNE, 0.1); ep->setParameter(VELOCITY_SENSE, 1.0); ep->setParameter(STEREO, 0.7); ep->setParameter(OVERDRIVE, 0.3); freeverb_r.roomsize(0.2); freeverb_l.roomsize(0.2); freeverb_r.damping(0.5); freeverb_l.damping(0.5); delaySweep_r.begin(1, modFreq, WAVEFORM_SINE); delaySweep_l.begin(1, modFreq, WAVEFORM_SINE); delaySweep_l.phase(180.0); envelope_r.begin(1, modFreq, WAVEFORM_SINE); envelope_l.begin(1, modFreq, WAVEFORM_SINE); envelope_l.phase(180.0); mixer_r.gain(0, 0.7); mixer_l.gain(0, 0.7); mixer_r.gain(1, 0.3); mixer_l.gain(1, 0.3); mixer_r.gain(2, 0.5); mixer_l.gain(2, 0.5); AudioInterrupts(); Serial.println(F("")); #if defined (DEBUG) && defined (SHOW_CPU_LOAD_MSEC) show_cpu_and_mem_usage(); cpu_mem_millis = 0; #endif } //************************************************************************************************* //* MAIN LOOP //************************************************************************************************* void loop() { int16_t* audio_buffer_r; // pointer to AUDIO_BLOCK_SAMPLES * sizeof(int16_t) int16_t* audio_buffer_l; // pointer to AUDIO_BLOCK_SAMPLES * sizeof(int16_t) const uint16_t audio_block_time_ms = 1000000 / (SAMPLE_RATE / AUDIO_BLOCK_SAMPLES); // Main sound calculation if (queue_r.available() && queue_l.available() && fill_audio_buffer > audio_block_time_us - 10) { fill_audio_buffer = 0; #if defined (DEBUG) && defined (SHOW_CPU_LOAD_MSEC) if (cpu_mem_millis > SHOW_CPU_LOAD_MSEC) { show_cpu_and_mem_usage(); cpu_mem_millis = 0; } #endif audio_buffer_r = queue_r.getBuffer(); if (audio_buffer_r == NULL) { Serial.println(F("E: audio_buffer_r allocation problems!")); } audio_buffer_l = queue_l.getBuffer(); if (audio_buffer_l == NULL) { Serial.println(F("E: audio_buffer_l allocation problems!")); } elapsedMicros t1; ep->process(audio_buffer_l, audio_buffer_r); uint32_t t2 = t1; if (t2 > audio_block_time_ms) // everything greater 2.9ms is a buffer underrun! xrun++; if (t2 > render_time_max) render_time_max = t2; if (peak_r.available()) { if (peak_r.read() > 1.00) peak++; } if (peak_l.available()) { if (peak_l.read() > 1.00) peak++; } #ifndef TEENSY_AUDIO_BOARD for (uint8_t i = 0; i < AUDIO_BLOCK_SAMPLES; i++) { audio_buffer_r[i] *= vol; audio_buffer_l[i] *= vol; } #endif queue_r.playBuffer(); queue_l.playBuffer(); } handle_input(); } //************************************************************************************************* //* PROGRAM FUNCTIONS //************************************************************************************************* void handle_input(void) { #ifdef MIDI_DEVICE_DIN while (midi_serial.read()) { #ifdef DEBUG Serial.println(F("[MIDI-Serial]")); #endif queue_midi_event(midi_serial.getType(), midi_serial.getData1(), midi_serial.getData2()); } #endif #ifdef MIDI_DEVICE_USB_HOST usb_host.Task(); while (midi_usb.read()) { #ifdef DEBUG Serial.println(F("[MIDI-USB-HOST]")); #endif queue_midi_event(midi_usb.getType(), midi_usb.getData1(), midi_usb.getData2()); } #endif #ifdef MIDI_DEVICE_USB while (midi_onboard_usb.read()) { #ifdef DEBUG Serial.println(F("[MIDI-USB]")); #endif queue_midi_event(midi_onboard_usb.getType(), midi_onboard_usb.getData1(), midi_onboard_usb.getData2()); } #endif } bool queue_midi_event(uint8_t type, uint8_t data1, uint8_t data2) { bool ret = false; #if defined(DEBUG) && defined(SHOW_MIDI_EVENT) print_midi_event(type, data1, data2); #endif // check for MIDI channel if (midi_channel != MIDI_CHANNEL_OMNI) { uint8_t c = type & 0x0f; if (c != midi_channel) { #ifdef DEBUG Serial.print(F("Ignoring MIDI data on channel ")); Serial.print(c); Serial.print(F("(listening on ")); Serial.print(midi_channel); Serial.println(F(")")); #endif return (false); } } // now throw away the MIDI channel information type &= 0xf0; ret = ep->processMidiMessage(type, data1, data2); return (ret); } void set_volume(float v, float vr, float vl) { vol = v; vol_right = vr; vol_left = vl; EEPROM.update(EEPROM_OFFSET + EEPROM_MASTER_VOLUME_ADDR, uint8_t(vol * UCHAR_MAX)); EEPROM.update(EEPROM_OFFSET + EEPROM_VOLUME_RIGHT_ADDR, uint8_t(vol_right * UCHAR_MAX)); EEPROM.update(EEPROM_OFFSET + EEPROM_VOLUME_LEFT_ADDR, uint8_t(vol_left * UCHAR_MAX)); update_eeprom_checksum(); #ifdef DEBUG uint8_t tmp; Serial.print(F("Setting volume: VOL=")); Serial.print(v, DEC); Serial.print(F("[")); tmp = EEPROM.read(EEPROM_OFFSET + EEPROM_MASTER_VOLUME_ADDR); Serial.print(tmp, DEC); Serial.print(F("/")); Serial.print(float(tmp) / UCHAR_MAX, DEC); Serial.print(F("] VOL_L=")); Serial.print(vl, DEC); Serial.print(F("[")); tmp = EEPROM.read(EEPROM_OFFSET + EEPROM_VOLUME_LEFT_ADDR); Serial.print(tmp, DEC); Serial.print(F("/")); Serial.print(float(tmp) / UCHAR_MAX, DEC); Serial.print(F("] VOL_R=")); Serial.print(vr, DEC); Serial.print(F("[")); tmp = EEPROM.read(EEPROM_OFFSET + EEPROM_VOLUME_RIGHT_ADDR); Serial.print(tmp, DEC); Serial.print(F("/")); Serial.print(float(tmp) / UCHAR_MAX, DEC); Serial.println(F("]")); #endif #ifdef TEENSY_AUDIO_BOARD sgtl5000_1.dacVolume(vol * vol_left, vol * vol_right); #else volume_r.gain(vr); volume_l.gain(vl); #endif } //************************************************************************************************* //* EEPROM FUNCTIONS //************************************************************************************************* void initial_values_from_eeprom(void) { uint32_t crc_eeprom = read_eeprom_checksum(); uint32_t crc = eeprom_crc32(EEPROM_OFFSET, EEPROM_DATA_LENGTH); #ifdef DEBUG Serial.print(F("EEPROM checksum: 0x")); Serial.print(crc_eeprom, HEX); Serial.print(F(" / 0x")); Serial.print(crc, HEX); #endif if (crc_eeprom != crc) { #ifdef DEBUG Serial.print(F(" - mismatch -> initializing EEPROM!")); #endif EEPROM.update(EEPROM_OFFSET + EEPROM_MASTER_VOLUME_ADDR, uint8_t(vol * UCHAR_MAX)); EEPROM.update(EEPROM_OFFSET + EEPROM_VOLUME_RIGHT_ADDR, uint8_t(vol_right * UCHAR_MAX)); EEPROM.update(EEPROM_OFFSET + EEPROM_VOLUME_LEFT_ADDR, uint8_t(vol_left * UCHAR_MAX)); update_eeprom_checksum(); } else { vol = float(EEPROM.read(EEPROM_OFFSET + EEPROM_MASTER_VOLUME_ADDR)) / UCHAR_MAX; vol_right = float(EEPROM.read(EEPROM_OFFSET + EEPROM_VOLUME_RIGHT_ADDR)) / UCHAR_MAX; vol_left = float(EEPROM.read(EEPROM_OFFSET + EEPROM_VOLUME_LEFT_ADDR)) / UCHAR_MAX; } #ifdef DEBUG Serial.println(); #endif } uint32_t read_eeprom_checksum(void) { return (EEPROM.read(EEPROM_CRC32_ADDR) << 24 | EEPROM.read(EEPROM_CRC32_ADDR + 1) << 16 | EEPROM.read(EEPROM_CRC32_ADDR + 2) << 8 | EEPROM.read(EEPROM_CRC32_ADDR + 3)); } void update_eeprom_checksum(void) { write_eeprom_checksum(eeprom_crc32(EEPROM_OFFSET, EEPROM_DATA_LENGTH)); // recalculate crc and write to eeprom } void write_eeprom_checksum(uint32_t crc) { EEPROM.update(EEPROM_CRC32_ADDR, (crc & 0xff000000) >> 24); EEPROM.update(EEPROM_CRC32_ADDR + 1, (crc & 0x00ff0000) >> 16); EEPROM.update(EEPROM_CRC32_ADDR + 2, (crc & 0x0000ff00) >> 8); EEPROM.update(EEPROM_CRC32_ADDR + 3, crc & 0x000000ff); } uint32_t eeprom_crc32(uint16_t calc_start, uint16_t calc_bytes) // base code from https://www.arduino.cc/en/Tutorial/EEPROMCrc { const uint32_t crc_table[16] = { 0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac, 0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c, 0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c, 0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c }; uint32_t crc = ~0L; if (calc_start + calc_bytes > EEPROM.length()) calc_bytes = EEPROM.length() - calc_start; for (uint16_t index = calc_start ; index < (calc_start + calc_bytes) ; ++index) { crc = crc_table[(crc ^ EEPROM[index]) & 0x0f] ^ (crc >> 4); crc = crc_table[(crc ^ (EEPROM[index] >> 4)) & 0x0f] ^ (crc >> 4); crc = ~crc; } return (crc); } //************************************************************************************************* //* DEBUG FUNCTIONS //************************************************************************************************* #ifdef DEBUG #ifdef SHOW_MIDI_EVENT void print_midi_event(uint8_t type, uint8_t data1, uint8_t data2) { Serial.print(F("MIDI-Channel: ")); if (midi_channel == MIDI_CHANNEL_OMNI) Serial.print(F("OMNI")); else Serial.print(midi_channel, DEC); Serial.print(F(", MIDI event type: 0x")); if (type < 16) Serial.print(F("0")); Serial.print(type, HEX); Serial.print(F(", data1: ")); Serial.print(data1, DEC); Serial.print(F(", data2: ")); Serial.println(data2, DEC); } #endif #endif #if defined (DEBUG) && defined (SHOW_CPU_LOAD_MSEC) void show_cpu_and_mem_usage(void) { Serial.print(F("CPU: ")); Serial.print(AudioProcessorUsage(), DEC); Serial.print(F(" CPU MAX: ")); Serial.print(AudioProcessorUsageMax(), DEC); Serial.print(F(" MEM: ")); Serial.print(AudioMemoryUsage(), DEC); Serial.print(F(" MEM MAX: ")); Serial.print(AudioMemoryUsageMax(), DEC); Serial.print(F(" RENDER_TIME_MAX: ")); Serial.print(render_time_max, DEC); Serial.print(F(" XRUN: ")); Serial.print(xrun, DEC); Serial.print(F(" OVERLOAD: ")); Serial.print(overload, DEC); Serial.print(F(" PEAK: ")); Serial.print(peak, DEC); Serial.println(); AudioProcessorUsageMaxReset(); AudioMemoryUsageMaxReset(); render_time_max = 0; } #endif