#include #include #include #include #include #include #include #include "mdaEPiano.h" #include "mdaEPianoData.h" #include "config.h" #ifdef USE_ONBOARD_USB_HOST #include #endif #ifndef MASTER_KEY_MIDI // selecting sounds by encoder, button and display #include #include #include #endif #ifndef MASTER_KEY_MIDI // [I2C] SCL: Pin 19, SDA: Pin 18 (https://www.pjrc.com/teensy/td_libs_Wire.html) #define LCD_I2C_ADDRESS 0x27 #define LCD_CHARS 16 #define LCD_LINES 2 LiquidCrystalPlus_I2C lcd(LCD_I2C_ADDRESS, LCD_CHARS, LCD_LINES); Encoder enc1(ENC1_PIN_A, ENC1_PIN_B); Bounce but1 = Bounce(BUT1_PIN, 10); // 10 ms debounce #endif // GUItool: begin automatically generated code AudioPlayQueue queue_r; //xy=494,404 AudioPlayQueue queue_l; //xy=494,404 AudioAnalyzePeak peak_r; //xy=695,491 AudioAnalyzePeak peak_l; //xy=695,491 #ifdef TEENSY_AUDIO_BOARD AudioOutputI2S i2s1; //xy=1072,364 AudioConnection patchCord1(queue_r, peak_r); AudioConnection patchCord2(queue_l, peak_l); AudioConnection patchCord3(queue_r, 0, i2s1, 0); AudioConnection patchCord4(queue_l, 0, i2s1, 1); AudioControlSGTL5000 sgtl5000_1; //xy=700,536 #else AudioOutputPT8211 pt8211_1; //xy=1079,320 AudioAmplifier volume_r; //xy=818,370 AudioAmplifier volume_l; //xy=818,411 AudioConnection patchCord1(queue_r, volume_r); AudioConnection patchCord2(queue_l, volume_l); AudioConnection patchCord3(volume_r, peak_r); AudioConnection patchCord4(volume_l, peak_l); AudioConnection patchCord5(volume_r, 0, pt8211_1, 0); AudioConnection patchCord6(volume_l, 0, pt8211_1, 1); #endif // GUItool: end automatically generated code mdaEPiano* ep; bool sd_card_available = false; uint8_t midi_channel = DEFAULT_MIDI_CHANNEL; uint32_t xrun = 0; uint32_t overload = 0; uint32_t peak = 0; uint16_t render_time_max = 0; uint8_t bank = 0; uint8_t voice = 0; float vol = VOLUME; float vol_right = 1.0; float vol_left = 1.0; #ifdef MASTER_KEY_MIDI bool master_key_enabled = false; #endif #ifdef SHOW_CPU_LOAD_MSEC elapsedMillis cpu_mem_millis; #endif #ifdef MIDI_DEVICE MIDI_CREATE_INSTANCE(HardwareSerial, MIDI_DEVICE, midi_serial); #endif #ifdef USE_ONBOARD_USB_HOST USBHost usb_host; MIDIDevice midi_usb(usb_host); #endif #ifdef TEST_NOTE IntervalTimer sched_note_on; IntervalTimer sched_note_off; uint8_t _voice_counter = 0; #endif void setup() { //while (!Serial) ; // wait for Arduino Serial Monitor Serial.begin(SERIAL_SPEED); delay(220); #ifndef MASTER_KEY_MIDI lcd.init(); lcd.blink_off(); lcd.cursor_off(); lcd.backlight(); lcd.noAutoscroll(); lcd.clear(); lcd.display(); lcd.show(0, 0, 20, "MicroDexed"); enc1.write(INITIAL_ENC1_VALUE); #endif Serial.println(F("MicroMDAEPiano based on https://sourceforge.net/projects/mda-vst")); Serial.println(F("(c)2018 H. Wirtz ")); Serial.println(F("https://about.teahub.io/dcoredump/MicroMDAEpiano")); Serial.print(F("Data in PROGMEM: ")); Serial.print(sizeof(epianoData), DEC); Serial.println(F(" bytes")); Serial.println(); Serial.println(F("")); ep = new mdaEPiano(); initial_values_from_eeprom(); // start up USB host #ifdef USE_ONBOARD_USB_HOST usb_host.begin(); #endif #ifdef MIDI_DEVICE // Start serial MIDI midi_serial.begin(DEFAULT_MIDI_CHANNEL); #endif // start audio card AudioMemory(AUDIO_MEM); #ifdef TEENSY_AUDIO_BOARD sgtl5000_1.enable(); //sgtl5000_1.dacVolumeRamp(); sgtl5000_1.dacVolumeRampLinear(); sgtl5000_1.unmuteHeadphone(); sgtl5000_1.unmuteLineout(); sgtl5000_1.autoVolumeDisable(); // turn off AGC sgtl5000_1.volume(1.0, 1.0); #endif set_volume(vol, vol_left, vol_right); // start SD card SPI.setMOSI(SDCARD_MOSI_PIN); SPI.setSCK(SDCARD_SCK_PIN); if (!SD.begin(SDCARD_CS_PIN)) { Serial.println(F("SD card not accessable")); } else { Serial.println(F("SD card found.")); sd_card_available = true; } #if defined (DEBUG) && defined (SHOW_CPU_LOAD_MSEC) // Initialize processor and memory measurements AudioProcessorUsageMaxReset(); AudioMemoryUsageMaxReset(); #endif Serial.print(F("AUDIO_BLOCK_SAMPLES=")); Serial.print(AUDIO_BLOCK_SAMPLES); Serial.print(F(" (Time per block=")); Serial.print(1000000 / (SAMPLE_RATE / AUDIO_BLOCK_SAMPLES)); Serial.println(F("ms)")); #ifdef TEST_NOTE Serial.println(F("MIDI test enabled")); sched_note_on.begin(note_on, 2000000); sched_note_off.begin(note_off, 6333333); #endif Serial.println(F("")); #if defined (DEBUG) && defined (SHOW_CPU_LOAD_MSEC) show_cpu_and_mem_usage(); cpu_mem_millis = 0; #endif } void loop() { int16_t* audio_buffer_r; // pointer to AUDIO_BLOCK_SAMPLES * int16_t int16_t* audio_buffer_l; // pointer to AUDIO_BLOCK_SAMPLES * int16_t const uint16_t audio_block_time_ms = 1000000 / (SAMPLE_RATE / AUDIO_BLOCK_SAMPLES); // Main sound calculation if (queue_r.available() && queue_l.available()) { audio_buffer_r = queue_r.getBuffer(); audio_buffer_l = queue_l.getBuffer(); #if defined (DEBUG) && defined (SHOW_CPU_LOAD_MSEC) if (cpu_mem_millis > SHOW_CPU_LOAD_MSEC) { show_cpu_and_mem_usage(); cpu_mem_millis = 0; } #endif handle_input(); audio_buffer_r = queue_r.getBuffer(); if (audio_buffer_r == NULL) { Serial.println(F("E: audio_buffer_r allocation problems!")); } audio_buffer_l = queue_l.getBuffer(); if (audio_buffer_l == NULL) { Serial.println(F("E: audio_buffer_l allocation problems!")); } elapsedMicros t1; ep->process(audio_buffer_l, audio_buffer_r, AUDIO_BLOCK_SAMPLES); uint32_t t2 = t1; if (t2 > audio_block_time_ms) // everything greater 2.9ms is a buffer underrun! xrun++; if (t2 > render_time_max) render_time_max = t2; if (peak_r.available()) { if (peak_r.read() > 0.99) peak++; } if (peak_l.available()) { if (peak_l.read() > 0.99) peak++; } #ifndef TEENSY_AUDIO_BOARD for (uint8_t i = 0; i < AUDIO_BLOCK_SAMPLES; i++) { audio_buffer_r[i] *= vol_r; audio_buffer_l[i] *= vol_l; } #endif queue_r.playBuffer(); queue_l.playBuffer(); } } void handle_input(void) { #ifdef USE_ONBOARD_USB_HOST usb_host.Task(); while (midi_usb.read()) { #ifdef DEBUG Serial.println(F("[MIDI-USB]")); #endif /* if (midi_usb.getType() >= 0xf0) // SysEX { handle_sysex_parameter(midi_usb.getSysExArray(), midi_usb.getSysExArrayLength()); } else */ if (queue_midi_event(midi_usb.getType(), midi_usb.getData1(), midi_usb.getData2())) return; } #endif #ifdef MIDI_DEVICE while (midi_serial.read()) { #ifdef DEBUG Serial.print(F("[MIDI-Serial] ")); #endif /* if (midi_serial.getType() >= 0xf0) // SYSEX { handle_sysex_parameter(midi_serial.getSysExArray(), midi_serial.getSysExArrayLength()); } else */ if (queue_midi_event(midi_serial.getType(), midi_serial.getData1(), midi_serial.getData2())) return; } #endif #ifndef MASTER_KEY_MIDI int enc1_val = enc1.read(); if (but1.update()) ; // place handling of encoder and showing values on lcd here #endif } #ifdef DEBUG #ifdef SHOW_MIDI_EVENT void print_midi_event(uint8_t type, uint8_t data1, uint8_t data2) { Serial.print(F("MIDI-Channel: ")); if (midi_channel == MIDI_CHANNEL_OMNI) Serial.print(F("OMNI")); else Serial.print(midi_channel, DEC); Serial.print(F(", MIDI event type: 0x")); if (type < 16) Serial.print(F("0")); Serial.print(type, HEX); Serial.print(F(", data1: ")); Serial.print(data1, DEC); Serial.print(F(", data2: ")); Serial.println(data2, DEC); #ifndef MASTER_KEY_MIDI lcd.show(1, 0, 3, data1); lcd.show(1, 4, 3, data2); #endif } #endif #endif #ifdef MASTER_KEY_MIDI bool handle_master_key(uint8_t data) { int8_t num = num_key_base_c(data); #ifdef DEBUG Serial.print(F("Master-Key: ")); Serial.println(num, DEC); #endif if (num > 0) { // a white key! if (num <= 32) { if (load_sysex(bank, num)) { #ifdef DEBUG Serial.print(F("Loading voice number ")); Serial.println(num, DEC); #endif EEPROM.update(EEPROM_OFFSET + EEPROM_VOICE_ADDR, num); update_eeprom_checksum(); } #ifdef DEBUG else { Serial.print(F("E: cannot load voice number ")); Serial.println(num, DEC); } #endif } return (true); } else { // a black key! num = abs(num); if (num <= 10) { set_volume(float(num * 0.1), vol_left, vol_right); } else if (num > 10 && num <= 20) { bank = num - 10; EEPROM.update(EEPROM_OFFSET + EEPROM_BANK_ADDR, bank); update_eeprom_checksum(); #ifdef DEBUG Serial.print(F("Bank switch to: ")); Serial.println(bank, DEC); #endif return (true); } } return (false); } #endif bool load_sysex(uint8_t bank, uint8_t num) { return (true); } bool queue_midi_event(uint8_t type, uint8_t data1, uint8_t data2) { bool ret = false; #if defined(DEBUG) && defined(SHOW_MIDI_EVENT) print_midi_event(type, data1, data2); #endif // check for MIDI channel if (midi_channel != MIDI_CHANNEL_OMNI) { uint8_t c = type & 0x0f; if (c != midi_channel) { #ifdef DEBUG Serial.print(F("Ignoring MIDI data on channel ")); Serial.print(c); Serial.print(F("(listening on ")); Serial.print(midi_channel); Serial.println(F(")")); #endif return (false); } } // now throw away the MIDI channel information type &= 0xf0; #ifdef MASTER_KEY_MIDI if (type == 0x80 && data1 == MASTER_KEY_MIDI) // Master key released { master_key_enabled = false; #ifdef DEBUG Serial.println(F("Master key disabled")); #endif } else if (type == 0x90 && data1 == MASTER_KEY_MIDI) // Master key pressed { master_key_enabled = true; #ifdef DEBUG Serial.println(F("Master key enabled")); #endif } else { if (master_key_enabled) { if (type == 0x80) // handle when note is released { //dexed->notesOff(); handle_master_key(data1); } } else #endif ret = ep->processMidiMessage(type, data1, data2); #ifdef MASTER_KEY_MIDI } #endif return (ret); } #ifdef MASTER_KEY_MIDI int8_t num_key_base_c(uint8_t midi_note) { int8_t num = 0; switch (midi_note % 12) { // positive numbers are white keys, negative black ones case 0: num = 1; break; case 1: num = -1; break; case 2: num = 2; break; case 3: num = -2; break; case 4: num = 3; break; case 5: num = 4; break; case 6: num = -3; break; case 7: num = 5; break; case 8: num = -4; break; case 9: num = 6; break; case 10: num = -5; break; case 11: num = 7; break; } if (num > 0) return (num + (((midi_note - MASTER_NUM1) / 12) * 7)); else return (num + ((((midi_note - MASTER_NUM1) / 12) * 5) * -1)); } #endif void set_volume(float v, float vr, float vl) { vol = v; vol_right = vr; vol_left = vl; EEPROM.update(EEPROM_OFFSET + EEPROM_MASTER_VOLUME_ADDR, uint8_t(vol * UCHAR_MAX)); EEPROM.update(EEPROM_OFFSET + EEPROM_VOLUME_RIGHT_ADDR, uint8_t(vol_right * UCHAR_MAX)); EEPROM.update(EEPROM_OFFSET + EEPROM_VOLUME_LEFT_ADDR, uint8_t(vol_left * UCHAR_MAX)); update_eeprom_checksum(); #ifdef DEBUG uint8_t tmp; Serial.print(F("Setting volume: VOL=")); Serial.print(v, DEC); Serial.print(F("[")); tmp = EEPROM.read(EEPROM_OFFSET + EEPROM_MASTER_VOLUME_ADDR); Serial.print(tmp, DEC); Serial.print(F("/")); Serial.print(float(tmp) / UCHAR_MAX, DEC); Serial.print(F("] VOL_L=")); Serial.print(vl, DEC); Serial.print(F("[")); tmp = EEPROM.read(EEPROM_OFFSET + EEPROM_VOLUME_LEFT_ADDR); Serial.print(tmp, DEC); Serial.print(F("/")); Serial.print(float(tmp) / UCHAR_MAX, DEC); Serial.print(F("] VOL_R=")); Serial.print(vr, DEC); Serial.print(F("[")); tmp = EEPROM.read(EEPROM_OFFSET + EEPROM_VOLUME_RIGHT_ADDR); Serial.print(tmp, DEC); Serial.print(F("/")); Serial.print(float(tmp) / UCHAR_MAX, DEC); Serial.println(F("]")); #endif #ifdef TEENSY_AUDIO_BOARD sgtl5000_1.dacVolume(vol * vol_left, vol * vol_right); #else volume_master.gain(vol); volume_r.gain(vr); volume_l.gain(vl); #endif } /* void handle_sysex_parameter(const uint8_t* sysex, uint8_t len) { if (sysex[1] != 0x43) // check for Yamaha sysex { #ifdef DEBUG Serial.println(F("E: SysEx vendor not Yamaha.")); #endif return; } // parse parameter change if (len == 7) { if ((sysex[3] & 0x7c) != 0 || (sysex[3] & 0x7c) != 2) { #ifdef DEBUG Serial.println(F("E: Not a SysEx parameter or function parameter change.")); #endif return; } if (sysex[6] != 0xf7) { #ifdef DEBUG Serial.println(F("E: SysEx end status byte not detected.")); #endif return; } if ((sysex[3] & 0x7c) == 0) { dexed->data[sysex[4]] = sysex[5]; // set parameter dexed->doRefreshVoice(); } else { dexed->data[DEXED_GLOBAL_PARAMETER_OFFSET - 63 + sysex[4]] = sysex[5]; // set function parameter dexed->controllers.values_[kControllerPitchRange] = dexed->data[DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_PITCHBEND_RANGE]; dexed->controllers.values_[kControllerPitchStep] = dexed->data[DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_PITCHBEND_STEP]; dexed->controllers.wheel.setRange(dexed->data[DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_MODWHEEL_RANGE]); dexed->controllers.wheel.setTarget(dexed->data[DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_MODWHEEL_ASSIGN]); dexed->controllers.foot.setRange(dexed->data[DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_FOOTCTRL_RANGE]); dexed->controllers.foot.setTarget(dexed->data[DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_FOOTCTRL_ASSIGN]); dexed->controllers.breath.setRange(dexed->data[DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_BREATHCTRL_RANGE]); dexed->controllers.breath.setTarget(dexed->data[DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_BREATHCTRL_ASSIGN]); dexed->controllers.at.setRange(dexed->data[DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_AT_RANGE]); dexed->controllers.at.setTarget(dexed->data[DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_AT_ASSIGN]); dexed->controllers.masterTune = (dexed->data[DEXED_GLOBAL_PARAMETER_OFFSET + DEXED_MASTER_TUNE] * 0x4000 << 11) * (1.0 / 12); dexed->controllers.refresh(); } #ifdef DEBUG Serial.print(F("SysEx")); if ((sysex[3] & 0x7c) == 0) Serial.print(F(" function")); Serial.print(F(" parameter ")); Serial.print(sysex[4], DEC); Serial.print(F(" = ")); Serial.println(sysex[5], DEC); #endif } #ifdef DEBUG else Serial.println(F("E: SysEx parameter length wrong.")); #endif } */ void initial_values_from_eeprom(void) { uint32_t crc_eeprom = read_eeprom_checksum(); uint32_t crc = eeprom_crc32(EEPROM_OFFSET, EEPROM_DATA_LENGTH); #ifdef DEBUG Serial.print(F("EEPROM checksum: 0x")); Serial.print(crc_eeprom, HEX); Serial.print(F(" / 0x")); Serial.print(crc, HEX); #endif if (crc_eeprom != crc) { #ifdef DEBUG Serial.print(F(" - mismatch -> initializing EEPROM!")); #endif EEPROM.update(EEPROM_OFFSET + EEPROM_BANK_ADDR, bank); EEPROM.update(EEPROM_OFFSET + EEPROM_VOICE_ADDR, voice); EEPROM.update(EEPROM_OFFSET + EEPROM_MASTER_VOLUME_ADDR, uint8_t(vol * UCHAR_MAX)); EEPROM.update(EEPROM_OFFSET + EEPROM_VOLUME_RIGHT_ADDR, uint8_t(vol_right * UCHAR_MAX)); EEPROM.update(EEPROM_OFFSET + EEPROM_VOLUME_LEFT_ADDR, uint8_t(vol_left * UCHAR_MAX)); update_eeprom_checksum(); } else { bank = EEPROM.read(EEPROM_OFFSET + EEPROM_BANK_ADDR); voice = EEPROM.read(EEPROM_OFFSET + EEPROM_VOICE_ADDR); vol = float(EEPROM.read(EEPROM_OFFSET + EEPROM_MASTER_VOLUME_ADDR)) / UCHAR_MAX; vol_right = float(EEPROM.read(EEPROM_OFFSET + EEPROM_VOLUME_RIGHT_ADDR)) / UCHAR_MAX; vol_left = float(EEPROM.read(EEPROM_OFFSET + EEPROM_VOLUME_LEFT_ADDR)) / UCHAR_MAX; } #ifdef DEBUG Serial.println(); #endif } uint32_t read_eeprom_checksum(void) { return (EEPROM.read(EEPROM_CRC32_ADDR) << 24 | EEPROM.read(EEPROM_CRC32_ADDR + 1) << 16 | EEPROM.read(EEPROM_CRC32_ADDR + 2) << 8 | EEPROM.read(EEPROM_CRC32_ADDR + 3)); } void update_eeprom_checksum(void) { write_eeprom_checksum(eeprom_crc32(EEPROM_OFFSET, EEPROM_DATA_LENGTH)); // recalculate crc and write to eeprom } void write_eeprom_checksum(uint32_t crc) { EEPROM.update(EEPROM_CRC32_ADDR, (crc & 0xff000000) >> 24); EEPROM.update(EEPROM_CRC32_ADDR + 1, (crc & 0x00ff0000) >> 16); EEPROM.update(EEPROM_CRC32_ADDR + 2, (crc & 0x0000ff00) >> 8); EEPROM.update(EEPROM_CRC32_ADDR + 3, crc & 0x000000ff); } uint32_t eeprom_crc32(uint16_t calc_start, uint16_t calc_bytes) // base code from https://www.arduino.cc/en/Tutorial/EEPROMCrc { const uint32_t crc_table[16] = { 0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac, 0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c, 0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c, 0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c }; uint32_t crc = ~0L; if (calc_start + calc_bytes > EEPROM.length()) calc_bytes = EEPROM.length() - calc_start; for (uint16_t index = calc_start ; index < (calc_start + calc_bytes) ; ++index) { crc = crc_table[(crc ^ EEPROM[index]) & 0x0f] ^ (crc >> 4); crc = crc_table[(crc ^ (EEPROM[index] >> 4)) & 0x0f] ^ (crc >> 4); crc = ~crc; } return (crc); } #if defined (DEBUG) && defined (SHOW_CPU_LOAD_MSEC) void show_cpu_and_mem_usage(void) { Serial.print(F("CPU: ")); Serial.print(AudioProcessorUsage(), DEC); Serial.print(F(" CPU MAX: ")); Serial.print(AudioProcessorUsageMax(), DEC); Serial.print(F(" MEM: ")); Serial.print(AudioMemoryUsage(), DEC); Serial.print(F(" MEM MAX: ")); Serial.print(AudioMemoryUsageMax(), DEC); Serial.print(F(" RENDER_TIME_MAX: ")); Serial.print(render_time_max, DEC); Serial.print(F(" XRUN: ")); Serial.print(xrun, DEC); Serial.print(F(" OVERLOAD: ")); Serial.print(overload, DEC); Serial.print(F(" PEAK: ")); Serial.print(peak, DEC); Serial.println(); AudioProcessorUsageMaxReset(); AudioMemoryUsageMaxReset(); render_time_max = 0; } #endif #ifdef TEST_NOTE void note_on(void) { randomSeed(analogRead(A0)); queue_midi_event(0x90, TEST_NOTE, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 1 queue_midi_event(0x90, TEST_NOTE + 5, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 2 queue_midi_event(0x90, TEST_NOTE + 8, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 3 queue_midi_event(0x90, TEST_NOTE + 12, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 4 queue_midi_event(0x90, TEST_NOTE + 17, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 5 queue_midi_event(0x90, TEST_NOTE + 20, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 6 queue_midi_event(0x90, TEST_NOTE + 24, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 7 queue_midi_event(0x90, TEST_NOTE + 29, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 8 queue_midi_event(0x90, TEST_NOTE + 32, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 9 queue_midi_event(0x90, TEST_NOTE + 37, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 10 queue_midi_event(0x90, TEST_NOTE + 40, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 11 queue_midi_event(0x90, TEST_NOTE + 46, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 12 queue_midi_event(0x90, TEST_NOTE + 49, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 13 queue_midi_event(0x90, TEST_NOTE + 52, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 14 queue_midi_event(0x90, TEST_NOTE + 57, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 15 queue_midi_event(0x90, TEST_NOTE + 60, random(TEST_VEL_MIN, TEST_VEL_MAX)); // 16 } void note_off(void) { queue_midi_event(0x80, TEST_NOTE, 0); // 1 queue_midi_event(0x80, TEST_NOTE + 5, 0); // 2 queue_midi_event(0x80, TEST_NOTE + 8, 0); // 3 queue_midi_event(0x80, TEST_NOTE + 12, 0); // 4 queue_midi_event(0x80, TEST_NOTE + 17, 0); // 5 queue_midi_event(0x80, TEST_NOTE + 20, 0); // 6 queue_midi_event(0x80, TEST_NOTE + 24, 0); // 7 queue_midi_event(0x80, TEST_NOTE + 29, 0); // 8 queue_midi_event(0x80, TEST_NOTE + 32, 0); // 9 queue_midi_event(0x80, TEST_NOTE + 37, 0); // 10 queue_midi_event(0x80, TEST_NOTE + 40, 0); // 11 queue_midi_event(0x80, TEST_NOTE + 46, 0); // 12 queue_midi_event(0x80, TEST_NOTE + 49, 0); // 13 queue_midi_event(0x80, TEST_NOTE + 52, 0); // 14 queue_midi_event(0x80, TEST_NOTE + 57, 0); // 15 queue_midi_event(0x80, TEST_NOTE + 60, 0); // 16 } #endif