Disabled BAPhysicalControls.

Added AudioEffectSimpleChorus, created from AudioEffectAnalogDelay.
master
Holger Wirtz 5 years ago
parent 7721cfdb80
commit c4cf09efed
  1. BIN
      src/.swp
  2. 159
      src/AudioEffectSimpleChorus.h
  3. 1
      src/BAEffects.h
  4. 2
      src/BALibrary.h
  5. 198
      src/effects/AudioEffectSimpleChorus.cpp
  6. 2
      src/peripherals/BAPhysicalControls.cpp.O

Binary file not shown.

@ -0,0 +1,159 @@
/**************************************************************************//**
* @file
* @author Steve Lascos
* @company Blackaddr Audio
*
* AudioEffectSimpleChorus is a class for simulating a classic BBD based delay
* like the Boss DM-2. This class works with either internal RAM, or external
* SPI RAM for longer delays. The exteranl ram uses DMA to minimize load on the
* CPU.
*
* @copyright This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.*
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*****************************************************************************/
#ifndef __BAEFFECTS_BAAUDIOEFFECTSIMPLECHORUS_H
#define __BAEFFECTS_BAAUDIOEFFECTSIMPLECHORUS_H
#include <Audio.h>
#include "LibBasicFunctions.h"
namespace BAEffects {
/**************************************************************************//**
* AudioEffectSimpleChorus models BBD based analog delays. It provides controls
* for delay, feedback (or regen), mix and output level. All parameters can be
* controlled by MIDI. The class supports internal memory, or external SPI
* memory by providing an ExtMemSlot. External memory access uses DMA to reduce
* process load.
*****************************************************************************/
class AudioEffectSimpleChorus : public AudioStream {
public:
///< List of AudioEffectSimpleChorus MIDI controllable parameters
enum {
BYPASS = 0, ///< controls effect bypass
FREQUENCY, ///< controls the amount of delay
INTENSITY, ///< controls the amount of echo feedback (regen)
MIX, ///< controls the the mix of input and echo signals
NUM_CONTROLS ///< this can be used as an alias for the number of MIDI controls
};
// *** CONSTRUCTORS ***
AudioEffectSimpleChorus() = delete;
/// Construct an analog delay using internal memory by specifying the maximum
/// delay in milliseconds.
/// @param maxDelayMs maximum delay in milliseconds. Larger delays use more memory.
AudioEffectSimpleChorus(float maxDelayMs);
/// Construct an analog delay using internal memory by specifying the maximum
virtual ~AudioEffectSimpleChorus(); ///< Destructor
// *** PARAMETERS ***
/// Bypass the effect.
/// @param byp when true, bypass wil disable the effect, when false, effect is enabled.
/// Note that audio still passes through when bypass is enabled.
void bypass(bool byp) { m_bypass = byp; }
/// Get if the effect is bypassed
/// @returns true if bypassed, false if not bypassed
bool isBypass() { return m_bypass; }
/// Toggle the bypass effect
void toggleBypass() { m_bypass = !m_bypass; }
/// Set the amount of echo feedback (a.k.a regeneration).
/// @param feedback a floating point number between 0.0 and 1.0.
void frequency(float frequency) { m_frequency = frequency; }
/// Set the amount of echo feedback (a.k.a regeneration).
/// @param feedback a floating point number between 0.0 and 1.0.
void intensity(float intensity) { m_intensity = intensity; }
/// Set the amount of blending between dry and wet (echo) at the output.
/// @param mix When 0.0, output is 100% dry, when 1.0, output is 100% wet. When
/// 0.5, output is 50% Dry, 50% Wet.
void mix(float mix) { m_mix = mix; }
// ** ENABLE / DISABLE **
/// Enables audio processing. Note: when not enabled, CPU load is nearly zero.
void enable() { m_enable = true; }
/// Disables audio process. When disabled, CPU load is nearly zero.
void disable() { m_enable = false; }
// ** MIDI **
/// Sets whether MIDI OMNI channel is processig on or off. When on,
/// all midi channels are used for matching CCs.
/// @param isOmni when true, all channels are processed, when false, channel
/// must match configured value.
void setMidiOmni(bool isOmni) { m_isOmni = isOmni; }
/// Configure an effect parameter to be controlled by a MIDI CC
/// number on a particular channel.
/// @param parameter one of the parameter names in the class enum
/// @param midiCC the CC number from 0 to 127
/// @param midiChannel the effect will only response to the CC on this channel
/// when OMNI mode is off.
void mapMidiControl(int parameter, int midiCC, int midiChannel = 0);
/// process a MIDI Continous-Controller (CC) message
/// @param channel the MIDI channel from 0 to 15)
/// @param midiCC the CC number from 0 to 127
/// @param value the CC value from 0 to 127
void processMidi(int channel, int midiCC, int value);
virtual void update(void); ///< update automatically called by the Teesny Audio Library
private:
/// Set the delay in milliseconds.
/// @param milliseconds the request delay in milliseconds. Must be less than max delay.
void delay(float milliseconds);
/// Set the delay in number of audio samples.
/// @param delaySamples the request delay in audio samples. Must be less than max delay.
void delay(size_t delaySamples);
/// Set the delay as a fraction of the maximum delay.
/// The value should be between 0.0f and 1.0f
void delayFractionMax(float delayFraction);
audio_block_t *m_inputQueueArray[1];
bool m_isOmni = false;
bool m_bypass = true;
bool m_enable = false;
BALibrary::AudioDelay *m_memory = nullptr;
size_t m_maxDelaySamples = 0;
audio_block_t *m_previousBlock = nullptr;
audio_block_t *m_blockToRelease = nullptr;
BALibrary::LowFrequencyOscillatorVector<float> lfo;
// Controls
int m_midiConfig[NUM_CONTROLS][2]; // stores the midi parameter mapping
size_t m_delaySamples = 0;
float m_frequency = 1.0f;
float m_intensity = 1.0f;
float m_mix = 0.0f;
void m_postProcessing(audio_block_t *out, audio_block_t *dry, audio_block_t *wet);
};
}
#endif /* __BAEFFECTS_BAAUDIOEFFECTANALOGDELAY_H */

@ -26,5 +26,6 @@
#include "AudioEffectAnalogDelay.h"
#include "AudioEffectSOS.h"
#include "AudioEffectTremolo.h"
#include "AudioEffectSimpleChorus.h"
#endif /* __BAEFFECTS_H */

@ -29,6 +29,6 @@
#include "BAAudioControlWM8731.h" // Codec Control
#include "BASpiMemory.h"
#include "BAGpio.h"
#include "BAPhysicalControls.h"
//#include "BAPhysicalControls.h"
#endif /* __BALIBRARY_H */

@ -0,0 +1,198 @@
/*
* AudioEffectSimpleChorus.cpp
*
* Created on: Jan 7, 2018
* Author: slascos
*/
#include <new>
#include <cmath> // std::roundf
#include "AudioEffectAnalogDelayFilters.h"
#include "AudioEffectSimpleChorus.h"
using namespace BALibrary;
namespace BAEffects {
constexpr int MIDI_CHANNEL = 0;
constexpr int MIDI_CONTROL = 1;
AudioEffectSimpleChorus::AudioEffectSimpleChorus(float maxDelayMs)
: AudioStream(1, m_inputQueueArray)
{
delay(maxDelayMs);
m_memory = new AudioDelay(maxDelayMs);
m_maxDelaySamples = calcAudioSamples(maxDelayMs);
lfo.setRateAudio(m_frequency);
}
AudioEffectSimpleChorus::~AudioEffectSimpleChorus()
{
if (m_memory) delete m_memory;
}
void AudioEffectSimpleChorus::update(void)
{
audio_block_t *inputAudioBlock = receiveReadOnly(); // get the next block of input samples
// Check is block is disabled
if (m_enable == false) {
// do not transmit or process any audio, return as quickly as possible.
if (inputAudioBlock) release(inputAudioBlock);
// release all held memory resources
if (m_previousBlock) {
release(m_previousBlock); m_previousBlock = nullptr;
}
// when using internal memory we have to release all references in the ring buffer
while (m_memory->getRingBuffer()->size() > 0) {
audio_block_t *releaseBlock = m_memory->getRingBuffer()->front();
m_memory->getRingBuffer()->pop_front();
if (releaseBlock) release(releaseBlock);
}
return;
}
// Check is block is bypassed, if so either transmit input directly or create silence
if (m_bypass == true) {
// transmit the input directly
if (!inputAudioBlock) {
// create silence
inputAudioBlock = allocate();
if (!inputAudioBlock) { return; } // failed to allocate
else {
clearAudioBlock(inputAudioBlock);
}
}
transmit(inputAudioBlock, 0);
release(inputAudioBlock);
return;
}
// Otherwise perform normal processing
// In order to make use of the SPI DMA, we need to request the read from memory first,
// then do other processing while it fills in the back.
audio_block_t *blockToOutput = nullptr; // this will hold the output audio
blockToOutput = allocate();
if (!blockToOutput) return; // skip this update cycle due to failure
// get the data. If using external memory with DMA, this won't be filled until
// later.
m_memory->getSamples(blockToOutput, m_delaySamples);
//audio_block_t *blockToRelease = m_memory->addBlock(blockToOutput);
// If using DMA, we need something else to do while that read executes, so
// move on to input preprocessing
// Chorus
float *mod = lfo.getNextVector();
for(uint8_t i=0;i<AUDIO_BLOCK_SAMPLES;i++)
{
/// HIER
//float sample=std::roundf((m_delaySamples/2)*mod[i]*(float)inputAudioBlock->data[i])+(m_delaySamples/2);
//inputAudioBlock->data[i] = (int16_t)sample/2+inputAudioBlock->data[i]/2;
blockToOutput->data[i]=(float(inputAudioBlock->data[i])*mod[i]);
}
// BACK TO OUTPUT PROCESSING
// perform the wet/dry mix mix
//m_postProcessing(blockToOutput, inputAudioBlock, blockToOutput);
transmit(blockToOutput);
release(inputAudioBlock);
release(m_previousBlock);
m_previousBlock = blockToOutput;
//if (m_blockToRelease) release(m_blockToRelease);
//m_blockToRelease = blockToRelease;
}
void AudioEffectSimpleChorus::delay(float milliseconds)
{
size_t delaySamples = calcAudioSamples(milliseconds);
if (delaySamples > m_memory->getMaxDelaySamples()) {
// this exceeds max delay value, limit it.
delaySamples = m_memory->getMaxDelaySamples();
}
if (!m_memory) { Serial.println("delay(): m_memory is not valid"); }
m_delaySamples = delaySamples;
}
void AudioEffectSimpleChorus::delay(size_t delaySamples)
{
if (!m_memory) { Serial.println("delay(): m_memory is not valid"); }
m_delaySamples = delaySamples;
}
void AudioEffectSimpleChorus::delayFractionMax(float delayFraction)
{
size_t delaySamples = static_cast<size_t>(static_cast<float>(m_memory->getMaxDelaySamples()) * delayFraction);
if (delaySamples > m_memory->getMaxDelaySamples()) {
// this exceeds max delay value, limit it.
delaySamples = m_memory->getMaxDelaySamples();
}
if (!m_memory) { Serial.println("delay(): m_memory is not valid"); }
m_delaySamples = delaySamples;
}
void AudioEffectSimpleChorus::m_postProcessing(audio_block_t *out, audio_block_t *dry, audio_block_t *wet)
{
if (!out) return; // no valid output buffer
if ( out && dry && wet) {
// Simulate the LPF IIR nature of the analog systems
alphaBlend(out, dry, wet, m_mix);
} else if (dry) {
memcpy(out->data, dry->data, sizeof(int16_t) * AUDIO_BLOCK_SAMPLES);
}
}
void AudioEffectSimpleChorus::processMidi(int channel, int control, int value)
{
float val = (float)value / 127.0f;
if ((m_midiConfig[FREQUENCY][MIDI_CHANNEL] == channel) &&
(m_midiConfig[FREQUENCY][MIDI_CONTROL] == control)) {
// Frequency
frequency(value/10);
Serial.println(String("AudioEffectSimpleChorus::frequency (Hz): ") + calcAudioTimeMs(value/10));
return;
}
if ((m_midiConfig[BYPASS][MIDI_CHANNEL] == channel) &&
(m_midiConfig[BYPASS][MIDI_CONTROL] == control)) {
// Bypass
if (value >= 65) { bypass(false); Serial.println(String("AudioEffectSimpleChorus::not bypassed -> ON") + value); }
else { bypass(true); Serial.println(String("AudioEffectSimpleChorus::bypassed -> OFF") + value); }
return;
}
if ((m_midiConfig[MIX][MIDI_CHANNEL] == channel) &&
(m_midiConfig[MIX][MIDI_CONTROL] == control)) {
// Mix
Serial.println(String("AudioEffectSimpleChorus::mix: Dry: ") + 100*(1-val) + String("% Wet: ") + 100*val );
mix(val);
return;
}
}
void AudioEffectSimpleChorus::mapMidiControl(int parameter, int midiCC, int midiChannel)
{
if (parameter >= NUM_CONTROLS) {
return ; // Invalid midi parameter
}
m_midiConfig[parameter][MIDI_CHANNEL] = midiChannel;
m_midiConfig[parameter][MIDI_CONTROL] = midiCC;
}
}

@ -17,7 +17,7 @@
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "BAPhysicalControls.h"
//#include "BAPhysicalControls.h"
// These calls must be define in order to get vector to work on arduino
namespace std {
Loading…
Cancel
Save