/************************************************************************* * This demo uses the BALibrary library to provide enhanced control of * the TGA Pro board. * * The latest copy of the BA Guitar library can be obtained from * https://github.com/Blackaddr/BALibrary * * This example demonstrates teh BAAudioEffectsAnalogDelay effect. It can * be controlled using the Blackaddr Audio "Expansion Control Board". * * POT1 (left) controls amount of delay * POT2 (right) controls amount of feedback * POT3 (center) controls the wet/dry mix * SW1 will enable/bypass the audio effect. LED1 will be on when effect is enabled. * SW2 will cycle through the 3 pre-programmed analog filters. LED2 will be on when SW2 is pressed. * * !!! SET POTS TO REASONABLE VALUES BEFORE STARTING TO AVOID SCREECHING FEEDBACK!!!! * - set POT1 (delay) fully counter-clockwise then increase it slowly. * - set POT2 (feedback) fully counter-clockwise, then increase it slowly * - set POT3 (wet/dry mix) to half-way at the detent. * * Using the Serial Montitor, send 'u' and 'd' characters to increase or decrease * the headphone volume between values of 0 and 9. */ #include "BALibrary.h" #include "BAEffects.h" using namespace BAEffects; using namespace BALibrary; //#define USE_CAB_FILTER // uncomment this line to add a simple low-pass filter to simulate a cabinet if you are going straight to headphones //#define USE_EXT // uncomment this line to use External MEM0 AudioInputI2S i2sIn; AudioOutputI2S i2sOut; BAAudioControlWM8731 codec; #ifdef USE_EXT // If using external SPI memory, we will instantiate a SRAM // manager and create an external memory slot to use as the memory // for our audio delay ExternalSramManager externalSram; ExtMemSlot delaySlot; // Declare an external memory slot. // Instantiate the AudioEffectAnalogDelay to use external memory by /// passing it the delay slot. AudioEffectAnalogDelay analogDelay(&delaySlot); #else // If using internal memory, we will instantiate the AudioEffectAnalogDelay // by passing it the maximum amount of delay we will use in millseconds. Note that // audio delay lengths are very limited when using internal memory due to limited // internal RAM size. AudioEffectAnalogDelay analogDelay(200.0f); // set the max delay of 200 ms. // If you use external SPI memory you can get up to 1485.0f ms of delay! #endif #if defined(USE_CAB_FILTER) AudioFilterBiquad cabFilter; // We'll want something to cut out the highs and smooth the tone, just like a guitar cab. #endif AudioConnection input(i2sIn,0, analogDelay,0); #if defined(USE_CAB_FILTER) AudioConnection delayOut(analogDelay, 0, cabFilter, 0); AudioConnection leftOut(cabFilter,0, i2sOut, 0); AudioConnection rightOut(cabFilter,0, i2sOut, 1); #else AudioConnection leftOut(analogDelay,0, i2sOut, 0); AudioConnection rightOut(analogDelay,0, i2sOut, 1); #endif ////////////////////////////////////////// // SETUP PHYSICAL CONTROLS // - POT1 (left) will control the amount of delay // - POT2 (right) will control the amount of feedback // - POT3 (centre) will control the wet/dry mix. // - SW1 (left) will be used as a bypass control // - LED1 (left) will be illuminated when the effect is ON (not bypass) // - SW2 (right) will be used to cycle through the three built in analog filter styles available. // - LED2 (right) will illuminate when pressing SW2. ////////////////////////////////////////// // To get the calibration values for your particular board, first run the // BAExpansionCalibrate.ino example and constexpr int potCalibMin = 1; constexpr int potCalibMax = 1018; constexpr bool potSwapDirection = true; // Create a control object using the number of switches, pots, encoders and outputs on the // Blackaddr Audio Expansion Board. BAPhysicalControls controls(BA_EXPAND_NUM_SW, BA_EXPAND_NUM_POT, BA_EXPAND_NUM_ENC, BA_EXPAND_NUM_LED); elapsedMillis timer; unsigned filterIndex = 0; // variable for storing which analog filter we're currently using. constexpr unsigned MAX_HEADPHONE_VOL = 10; unsigned headphoneVolume = 8; // control headphone volume from 0 to 10. // BAPhysicalControls returns a handle when you register a new control. We'll uses these handles when working with the controls. int bypassHandle, filterHandle, delayHandle, feedbackHandle, mixHandle, led1Handle, led2Handle; // Handles for the various controls void setup() { TGA_PRO_MKII_REV1(); // Declare the version of the TGA Pro you are using. //TGA_PRO_REVB(x); //TGA_PRO_REVA(x); #ifdef USE_EXT SPI_MEM0_64M(); // Optional 64Mbit SPI RAM //SPI_MEM0_4M(); // Older REVB and REVA boards offered 1M or 4M //SPI_MEM0_1M(); #endif delay(100); // wait a bit for serial to be available Serial.begin(57600); // Start the serial port delay(100); // Configure the hardware // Setup the controls. The return value is the handle to use when checking for control changes, etc. // pushbuttons bypassHandle = controls.addSwitch(BA_EXPAND_SW1_PIN); // will be used for bypass control filterHandle = controls.addSwitch(BA_EXPAND_SW2_PIN); // will be used for stepping through filters // pots delayHandle = controls.addPot(BA_EXPAND_POT1_PIN, potCalibMin, potCalibMax, potSwapDirection); // control the amount of delay feedbackHandle = controls.addPot(BA_EXPAND_POT2_PIN, potCalibMin, potCalibMax, potSwapDirection); mixHandle = controls.addPot(BA_EXPAND_POT3_PIN, potCalibMin, potCalibMax, potSwapDirection); // leds led1Handle = controls.addOutput(BA_EXPAND_LED1_PIN); led2Handle = controls.addOutput(BA_EXPAND_LED2_PIN); // will illuminate when pressing SW2 // Disable the audio codec first codec.disable(); AudioMemory(128); // Enable and configure the codec Serial.println("Enabling codec...\n"); codec.enable(); codec.setHeadphoneVolume(1.0f); // Max headphone volume // If using external memory request request memory from the manager // for the slot #ifdef USE_EXT Serial.println("Using EXTERNAL memory"); // We have to request memory be allocated to our slot. externalSram.requestMemory(&delaySlot, 500.0f, MemSelect::MEM0, true); #else Serial.println("Using INTERNAL memory"); #endif // Besure to enable the delay. When disabled, audio is is completely blocked by the effect // to minimize resource usage to nearly to nearly zero. analogDelay.enable(); // Set some default values. // These can be changed using the controls on the Blackaddr Audio Expansion Board analogDelay.bypass(false); controls.setOutput(led1Handle, !analogDelay.isBypass()); // Set the LED when NOT bypassed analogDelay.mix(0.5f); analogDelay.feedback(0.0f); ////////////////////////////////// // AnalogDelay filter selection // // These are commented out, in this example we'll use SW2 to cycle through the different filters //analogDelay.setFilter(AudioEffectAnalogDelay::Filter::DM3); // The default filter. Naturally bright echo (highs stay, lows fade away) //analogDelay.setFilter(AudioEffectAnalogDelay::Filter::WARM); // A warm filter with a smooth frequency rolloff above 2Khz //analogDelay.setFilter(AudioEffectAnalogDelay::Filter::DARK); // A very dark filter, with a sharp rolloff above 1Khz #if defined(USE_CAB_FILTER) // Guitar cabinet: Setup 2-stages of LPF, cutoff 4500 Hz, Q-factor 0.7071 (a 'normal' Q-factor) cabFilter.setLowpass(0, 4500, .7071); cabFilter.setLowpass(1, 4500, .7071); #endif } void loop() { float potValue; // Check if SW1 has been toggled (pushed) if (controls.isSwitchToggled(bypassHandle)) { bool bypass = analogDelay.isBypass(); // get the current state bypass = !bypass; // change it analogDelay.bypass(bypass); // set the new state controls.setOutput(led1Handle, !bypass); // Set the LED when NOT bypassed Serial.println(String("BYPASS is ") + bypass); } // Use SW2 to cycle through the filters controls.setOutput(led2Handle, controls.getSwitchValue(led2Handle)); if (controls.isSwitchToggled(filterHandle)) { filterIndex = (filterIndex + 1) % 3; // update and potentionall roll the counter 0, 1, 2, 0, 1, 2, ... // cast the index between 0 to 2 to the enum class AudioEffectAnalogDelay::Filter analogDelay.setFilter(static_cast(filterIndex)); // will cycle through 0 to 2 Serial.println(String("Filter set to ") + filterIndex); } // Use POT1 (left) to control the delay setting if (controls.checkPotValue(delayHandle, potValue)) { // Pot has changed Serial.println(String("New DELAY setting: ") + potValue); analogDelay.delayFractionMax(potValue); } // Use POT2 (right) to control the feedback setting if (controls.checkPotValue(feedbackHandle, potValue)) { // Pot has changed Serial.println(String("New FEEDBACK setting: ") + potValue); analogDelay.feedback(potValue); } // Use POT3 (centre) to control the mix setting if (controls.checkPotValue(mixHandle, potValue)) { // Pot has changed Serial.println(String("New MIX setting: ") + potValue); analogDelay.mix(potValue); } // Use the 'u' and 'd' keys to adjust volume across ten levels. if (Serial) { if (Serial.available() > 0) { while (Serial.available()) { char key = Serial.read(); if (key == 'u') { headphoneVolume = (headphoneVolume + 1) % MAX_HEADPHONE_VOL; Serial.println(String("Increasing HEADPHONE volume to ") + headphoneVolume); } else if (key == 'd') { headphoneVolume = (headphoneVolume - 1) % MAX_HEADPHONE_VOL; Serial.println(String("Decreasing HEADPHONE volume to ") + headphoneVolume); } codec.setHeadphoneVolume(static_cast(headphoneVolume) / static_cast(MAX_HEADPHONE_VOL)); } } } delay(20); // Without some minimal delay here it will be difficult for the pots/switch changes to be detected. if (timer > 1000) { timer = 0; Serial.print("Processor Usage, Total: "); Serial.print(AudioProcessorUsage()); Serial.print("% "); Serial.print(" analogDelay: "); Serial.print(analogDelay.processorUsage()); Serial.println("%"); } }