You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
BALibrary_parasitstudio/src/BASpiMemory.cpp

448 lines
12 KiB

/*
* BASpiMemory.cpp
*
* Created on: May 22, 2017
* Author: slascos
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.*
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "Arduino.h"
#include "BASpiMemory.h"
namespace BAGuitar {
// MEM0 Settings
constexpr int SPI_CS_MEM0 = 15;
constexpr int SPI_MOSI_MEM0 = 7;
constexpr int SPI_MISO_MEM0 = 8;
constexpr int SPI_SCK_MEM0 = 14;
// MEM1 Settings
constexpr int SPI_CS_MEM1 = 31;
constexpr int SPI_MOSI_MEM1 = 21;
constexpr int SPI_MISO_MEM1 = 5;
constexpr int SPI_SCK_MEM1 = 20;
// SPI Constants
constexpr int SPI_WRITE_MODE_REG = 0x1;
constexpr int SPI_WRITE_CMD = 0x2;
constexpr int SPI_READ_CMD = 0x3;
constexpr int SPI_ADDR_2_MASK = 0xFF0000;
constexpr int SPI_ADDR_2_SHIFT = 16;
constexpr int SPI_ADDR_1_MASK = 0x00FF00;
constexpr int SPI_ADDR_1_SHIFT = 8;
constexpr int SPI_ADDR_0_MASK = 0x0000FF;
BASpiMemory::BASpiMemory(SpiDeviceId memDeviceId)
{
m_memDeviceId = memDeviceId;
m_settings = {20000000, MSBFIRST, SPI_MODE0};
}
BASpiMemory::BASpiMemory(SpiDeviceId memDeviceId, uint32_t speedHz)
{
m_memDeviceId = memDeviceId;
m_settings = {speedHz, MSBFIRST, SPI_MODE0};
}
// Intitialize the correct Arduino SPI interface
void BASpiMemory::begin()
{
switch (m_memDeviceId) {
case SpiDeviceId::SPI_DEVICE0 :
m_csPin = SPI_CS_MEM0;
m_spi = &SPI;
m_spi->setMOSI(SPI_MOSI_MEM0);
m_spi->setMISO(SPI_MISO_MEM0);
m_spi->setSCK(SPI_SCK_MEM0);
m_spi->begin();
break;
#if defined(__MK64FX512__) || defined(__MK66FX1M0__)
case SpiDeviceId::SPI_DEVICE1 :
m_csPin = SPI_CS_MEM1;
m_spi = &SPI1;
m_spi->setMOSI(SPI_MOSI_MEM1);
m_spi->setMISO(SPI_MISO_MEM1);
m_spi->setSCK(SPI_SCK_MEM1);
m_spi->begin();
break;
#endif
default :
// unreachable since memDeviceId is an enumerated class
return;
}
pinMode(m_csPin, OUTPUT);
digitalWrite(m_csPin, HIGH);
m_started = true;
}
BASpiMemory::~BASpiMemory() {
}
// Single address write
void BASpiMemory::write(size_t address, uint8_t data)
{
m_spi->beginTransaction(m_settings);
digitalWrite(m_csPin, LOW);
m_spi->transfer(SPI_WRITE_CMD);
m_spi->transfer((address & SPI_ADDR_2_MASK) >> SPI_ADDR_2_SHIFT);
m_spi->transfer((address & SPI_ADDR_1_MASK) >> SPI_ADDR_1_SHIFT);
m_spi->transfer((address & SPI_ADDR_0_MASK));
m_spi->transfer(data);
m_spi->endTransaction();
digitalWrite(m_csPin, HIGH);
}
// Single address write
void BASpiMemory::write(size_t address, uint8_t *src, size_t numBytes)
{
uint8_t *dataPtr = src;
m_spi->beginTransaction(m_settings);
digitalWrite(m_csPin, LOW);
m_spi->transfer(SPI_WRITE_CMD);
m_spi->transfer((address & SPI_ADDR_2_MASK) >> SPI_ADDR_2_SHIFT);
m_spi->transfer((address & SPI_ADDR_1_MASK) >> SPI_ADDR_1_SHIFT);
m_spi->transfer((address & SPI_ADDR_0_MASK));
for (size_t i=0; i < numBytes; i++) {
m_spi->transfer(*dataPtr++);
}
m_spi->endTransaction();
digitalWrite(m_csPin, HIGH);
}
void BASpiMemory::zero(size_t address, size_t numBytes)
{
m_spi->beginTransaction(m_settings);
digitalWrite(m_csPin, LOW);
m_spi->transfer(SPI_WRITE_CMD);
m_spi->transfer((address & SPI_ADDR_2_MASK) >> SPI_ADDR_2_SHIFT);
m_spi->transfer((address & SPI_ADDR_1_MASK) >> SPI_ADDR_1_SHIFT);
m_spi->transfer((address & SPI_ADDR_0_MASK));
for (size_t i=0; i < numBytes; i++) {
m_spi->transfer(0);
}
m_spi->endTransaction();
digitalWrite(m_csPin, HIGH);
}
void BASpiMemory::write16(size_t address, uint16_t data)
{
m_spi->beginTransaction(m_settings);
digitalWrite(m_csPin, LOW);
m_spi->transfer16((SPI_WRITE_CMD << 8) | (address >> 16) );
m_spi->transfer16(address & 0xFFFF);
m_spi->transfer16(data);
m_spi->endTransaction();
digitalWrite(m_csPin, HIGH);
}
void BASpiMemory::write16(size_t address, uint16_t *src, size_t numWords)
{
uint16_t *dataPtr = src;
m_spi->beginTransaction(m_settings);
digitalWrite(m_csPin, LOW);
m_spi->transfer16((SPI_WRITE_CMD << 8) | (address >> 16) );
m_spi->transfer16(address & 0xFFFF);
for (size_t i=0; i<numWords; i++) {
m_spi->transfer16(*dataPtr++);
}
m_spi->endTransaction();
digitalWrite(m_csPin, HIGH);
}
void BASpiMemory::zero16(size_t address, size_t numWords)
{
m_spi->beginTransaction(m_settings);
digitalWrite(m_csPin, LOW);
m_spi->transfer16((SPI_WRITE_CMD << 8) | (address >> 16) );
m_spi->transfer16(address & 0xFFFF);
for (size_t i=0; i<numWords; i++) {
m_spi->transfer16(0);
}
m_spi->endTransaction();
digitalWrite(m_csPin, HIGH);
Serial.println("DONE!");
}
// single address read
uint8_t BASpiMemory::read(size_t address)
{
int data;
m_spi->beginTransaction(m_settings);
digitalWrite(m_csPin, LOW);
m_spi->transfer(SPI_READ_CMD);
m_spi->transfer((address & SPI_ADDR_2_MASK) >> SPI_ADDR_2_SHIFT);
m_spi->transfer((address & SPI_ADDR_1_MASK) >> SPI_ADDR_1_SHIFT);
m_spi->transfer((address & SPI_ADDR_0_MASK));
data = m_spi->transfer(0);
m_spi->endTransaction();
digitalWrite(m_csPin, HIGH);
return data;
}
void BASpiMemory::read(size_t address, uint8_t *dest, size_t numBytes)
{
uint8_t *dataPtr = dest;
m_spi->beginTransaction(m_settings);
digitalWrite(m_csPin, LOW);
m_spi->transfer(SPI_READ_CMD);
m_spi->transfer((address & SPI_ADDR_2_MASK) >> SPI_ADDR_2_SHIFT);
m_spi->transfer((address & SPI_ADDR_1_MASK) >> SPI_ADDR_1_SHIFT);
m_spi->transfer((address & SPI_ADDR_0_MASK));
for (size_t i=0; i<numBytes; i++) {
*dataPtr++ = m_spi->transfer(0);
}
m_spi->endTransaction();
digitalWrite(m_csPin, HIGH);
}
uint16_t BASpiMemory::read16(size_t address)
{
uint16_t data;
m_spi->beginTransaction(m_settings);
digitalWrite(m_csPin, LOW);
m_spi->transfer16((SPI_READ_CMD << 8) | (address >> 16) );
m_spi->transfer16(address & 0xFFFF);
data = m_spi->transfer16(0);
m_spi->endTransaction();
digitalWrite(m_csPin, HIGH);
return data;
}
void BASpiMemory::read16(size_t address, uint16_t *dest, size_t numWords)
{
uint16_t *dataPtr = dest;
m_spi->beginTransaction(m_settings);
digitalWrite(m_csPin, LOW);
m_spi->transfer16((SPI_READ_CMD << 8) | (address >> 16) );
m_spi->transfer16(address & 0xFFFF);
for (size_t i=0; i<numWords; i++) {
*dataPtr++ = m_spi->transfer16(0);
}
m_spi->endTransaction();
digitalWrite(m_csPin, HIGH);
}
/////////////////////////////////////////////////////////////////////////////
// BASpiMemoryDMA
/////////////////////////////////////////////////////////////////////////////
BASpiMemoryDMA::BASpiMemoryDMA(SpiDeviceId memDeviceId, size_t bufferSizeBytes)
: BASpiMemory(memDeviceId), m_bufferSize(bufferSizeBytes)
{
int cs;
switch (memDeviceId) {
case SpiDeviceId::SPI_DEVICE0 :
cs = SPI_CS_MEM0;
break;
case SpiDeviceId::SPI_DEVICE1 :
cs = SPI_CS_MEM1;
break;
default :
cs = SPI_CS_MEM0;
}
m_cs = new ActiveLowChipSelect(cs, m_settings);
// add 4 bytes to buffer for SPI CMD and 3 bytes of addresse
m_txBuffer = new uint8_t[bufferSizeBytes+4];
m_rxBuffer = new uint8_t[bufferSizeBytes+4];
m_txTransfer = new DmaSpi::Transfer();
m_rxTransfer = new DmaSpi::Transfer();
}
BASpiMemoryDMA::BASpiMemoryDMA(SpiDeviceId memDeviceId, uint32_t speedHz, size_t bufferSizeBytes)
: BASpiMemory(memDeviceId, speedHz), m_bufferSize(bufferSizeBytes)
{
int cs;
switch (memDeviceId) {
case SpiDeviceId::SPI_DEVICE0 :
cs = SPI_CS_MEM0;
break;
case SpiDeviceId::SPI_DEVICE1 :
cs = SPI_CS_MEM1;
break;
default :
cs = SPI_CS_MEM0;
}
m_cs = new ActiveLowChipSelect(cs, m_settings);
m_txBuffer = new uint8_t[bufferSizeBytes+4];
m_rxBuffer = new uint8_t[bufferSizeBytes+4];
m_txTransfer = new DmaSpi::Transfer();
m_rxTransfer = new DmaSpi::Transfer();
}
BASpiMemoryDMA::~BASpiMemoryDMA()
{
delete m_cs;
if (m_txBuffer) delete [] m_txBuffer;
if (m_rxBuffer) delete [] m_rxBuffer;
if (m_txTransfer) delete m_txTransfer;
if (m_rxTransfer) delete m_rxTransfer;
}
void BASpiMemoryDMA::m_setSpiCmdAddr(int command, size_t address, uint8_t *dest)
{
dest[0] = command;
dest[1] = ((address & SPI_ADDR_2_MASK) >> SPI_ADDR_2_SHIFT);
dest[2] = ((address & SPI_ADDR_1_MASK) >> SPI_ADDR_1_SHIFT);
dest[3] = ((address & SPI_ADDR_0_MASK));
}
void BASpiMemoryDMA::begin(void)
{
switch (m_memDeviceId) {
case SpiDeviceId::SPI_DEVICE0 :
m_csPin = SPI_CS_MEM0;
m_spi = &SPI;
m_spi->setMOSI(SPI_MOSI_MEM0);
m_spi->setMISO(SPI_MISO_MEM0);
m_spi->setSCK(SPI_SCK_MEM0);
m_spi->begin();
m_spiDma = &DMASPI0;
break;
#if defined(__MK64FX512__) || defined(__MK66FX1M0__)
case SpiDeviceId::SPI_DEVICE1 :
m_csPin = SPI_CS_MEM1;
m_spi = &SPI1;
m_spi->setMOSI(SPI_MOSI_MEM1);
m_spi->setMISO(SPI_MISO_MEM1);
m_spi->setSCK(SPI_SCK_MEM1);
m_spi->begin();
m_spiDma = &DMASPI1;
break;
#endif
default :
// unreachable since memDeviceId is an enumerated class
return;
}
m_spiDma->begin();
m_spiDma->start();
m_started = true;
}
// SPI must build up a payload that starts the teh CMD/Address first. It will cycle
// through the payloads in a circular buffer and use the transfer objects to check if they
// are done before continuing.
void BASpiMemoryDMA::write(size_t address, uint8_t *src, size_t numBytes)
{
while ( m_txTransfer->busy()) {} // wait until not busy
uint16_t transferCount = numBytes + 4; // transfer must be increased by the SPI command and address
m_setSpiCmdAddr(SPI_WRITE_CMD, address, m_txBuffer);
memcpy(m_txBuffer+4, src, numBytes);
*m_txTransfer = DmaSpi::Transfer(m_txBuffer, transferCount, nullptr, 0, m_cs);
m_spiDma->registerTransfer(*m_txTransfer);
}
void BASpiMemoryDMA::zero(size_t address, size_t numBytes)
{
while ( m_txTransfer->busy()) {}
uint16_t transferCount = numBytes + 4;
m_setSpiCmdAddr(SPI_WRITE_CMD, address, m_txBuffer);
memset(m_txBuffer+4, 0, numBytes);
*m_txTransfer = DmaSpi::Transfer(m_txBuffer, transferCount, nullptr, 0, m_cs);
m_spiDma->registerTransfer(*m_txTransfer);
}
void BASpiMemoryDMA::write16(size_t address, uint16_t *src, size_t numWords)
{
while ( m_txTransfer->busy()) {}
size_t numBytes = sizeof(uint16_t)*numWords;
uint16_t transferCount = numBytes + 4;
m_setSpiCmdAddr(SPI_WRITE_CMD, address, m_txBuffer);
memcpy(m_txBuffer+4, src, numBytes);
*m_txTransfer = DmaSpi::Transfer(m_txBuffer, transferCount, nullptr, 0, m_cs);
m_spiDma->registerTransfer(*m_txTransfer);
}
void BASpiMemoryDMA::zero16(size_t address, size_t numWords)
{
while ( m_txTransfer->busy()) {}
size_t numBytes = sizeof(uint16_t)*numWords;
uint16_t transferCount = numBytes + 4;
m_setSpiCmdAddr(SPI_WRITE_CMD, address, m_txBuffer);
memset(m_txBuffer+4, 0, numBytes);
*m_txTransfer = DmaSpi::Transfer(m_txBuffer, transferCount, nullptr, 0, m_cs);
m_spiDma->registerTransfer(*m_txTransfer);
}
void BASpiMemoryDMA::read(size_t address, uint8_t *dest, size_t numBytes)
{
UNUSED(dest);
while ( m_rxTransfer->busy()) {}
uint16_t transferCount = numBytes + 4;
m_setSpiCmdAddr(SPI_READ_CMD, address, m_rxBuffer);
*m_rxTransfer = DmaSpi::Transfer(m_rxBuffer, transferCount, m_rxBuffer, 0, m_cs);
m_spiDma->registerTransfer(*m_rxTransfer);
}
void BASpiMemoryDMA::read16(size_t address, uint16_t *dest, size_t numWords)
{
UNUSED(dest);
while ( m_rxTransfer->busy()) {}
m_setSpiCmdAddr(SPI_READ_CMD, address, m_rxBuffer);
size_t numBytes = sizeof(uint16_t)*numWords;
uint16_t transferCount = numBytes + 4;
*m_rxTransfer = DmaSpi::Transfer(m_rxBuffer, transferCount, m_rxBuffer, 0, m_cs);
m_spiDma->registerTransfer(*m_rxTransfer);
}
bool BASpiMemoryDMA::isWriteBusy(void)
{
return m_txTransfer->busy();
}
bool BASpiMemoryDMA::isReadBusy(void)
{
return m_rxTransfer->busy();
}
void BASpiMemoryDMA::readBufferContents(uint16_t *dest, size_t numWords, size_t wordOffset)
{
readBufferContents(reinterpret_cast<uint8_t *>(dest), sizeof(uint16_t)*numWords, sizeof(uint16_t)*wordOffset);
}
void BASpiMemoryDMA::readBufferContents(uint8_t *dest, size_t numBytes, size_t byteOffset)
{
while (m_rxTransfer->busy()) {} // ensure transfer is complete
memcpy(dest, m_rxBuffer+4+byteOffset, numBytes);
}
} /* namespace BAGuitar */