You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
BALibrary_parasitstudio/src/AudioEffectAnalogDelay.h

121 lines
4.9 KiB

/**************************************************************************//**
* @file
* @author Steve Lascos
* @company Blackaddr Audio
*
* AudioEffectAnalogDelay is a class for simulating a classic BBD based delay
* like the Boss DM-2. This class works with either internal RAM, or external
* SPI RAM for longer delays. The exteranl ram uses DMA to minimize load on the
* CPU.
*
* @copyright This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.*
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*****************************************************************************/
#ifndef __BAGUITAR_BAAUDIOEFFECTANALOGDELAY_H
#define __BAGUITAR_BAAUDIOEFFECTANALOGDELAY_H
#include <Audio.h>
#include "LibBasicFunctions.h"
namespace BAGuitar {
/**************************************************************************//**
* AudioEffectAnalogDelay models BBD based analog delays. It provides controls
* for delay, feedback (or regen), mix and output level. All parameters can be
* controlled by MIDI. The class supports internal memory, or external SPI
* memory by providing an ExtMemSlot. External memory access uses DMA to reduce
* process load.
*****************************************************************************/
class AudioEffectAnalogDelay : public AudioStream {
public:
AudioEffectAnalogDelay() = delete;
/// Construct an analog delay using internal memory by specifying the maximum
/// delay in milliseconds.
/// @param maxDelayMs maximum delay in milliseconds. Larger delays use more memory.
AudioEffectAnalogDelay(float maxDelayMs);
/// Construct an analog delay using internal memory by specifying the maximum
/// delay in audio samples.
/// @param numSamples maximum delay in audio samples. Larger delays use more memory.
AudioEffectAnalogDelay(size_t numSamples);
/// Construct an analog delay using external SPI via an ExtMemSlot. The amount of
/// delay will be determined by the amount of memory in the slot.
/// @param slot A pointer to the ExtMemSlot to use for the delay.
AudioEffectAnalogDelay(ExtMemSlot *slot); // requires sufficiently sized pre-allocated memory
virtual ~AudioEffectAnalogDelay(); ///< Destructor
/// Set the delay in milliseconds.
/// @param milliseconds the request delay in milliseconds. Must be less than max delay.
void delay(float milliseconds);
/// Set the delay in number of audio samples.
/// @param delaySamples the request delay in audio samples. Must be less than max delay.
void delay(size_t delaySamples);
/// Bypass the effect.
/// @param byp when true, bypass wil disable the effect, when false, effect is enabled.
/// Note that audio still passes through when bypass is enabled.
void bypass(bool byp) { m_bypass = byp; }
/// Set the amount of echo feedback (a.k.a regeneration).
/// @param feedback a floating point number between 0.0 and 1.0.
void feedback(float feedback) { m_feedback = feedback; }
/// Set the amount of blending between dry and wet (echo) at the output.
/// @param mix When 0.0, output is 100% dry, when 1.0, output is 100% wet. When
/// 0.5, output is 50% Dry, 50% Wet.
void mix(float mix) { m_mix = mix; }
/// Enables audio processing. Note: when not enabled, CPU load is nearly zero.
void enable() { m_enable = true; }
/// Disables audio process. When disabled, CPU load is nearly zero.
void disable() { m_enable = false; }
void processMidi(int channel, int control, int value);
void mapMidiBypass(int control, int channel = 0);
void mapMidiDelay(int control, int channel = 0);
void mapMidiFeedback(int control, int channel = 0);
void mapMidiMix(int control, int channel = 0);
virtual void update(void); ///< update automatically called by the Teesny Audio Library
private:
audio_block_t *m_inputQueueArray[1];
bool m_bypass = true;
bool m_enable = false;
bool m_externalMemory = false;
AudioDelay *m_memory = nullptr;
size_t m_maxDelaySamples = 0;
audio_block_t *m_previousBlock = nullptr;
audio_block_t *m_blockToRelease = nullptr;
IirBiQuadFilterHQ *m_iir = nullptr;
// Controls
int m_midiConfig[4][2];
size_t m_delaySamples = 0;
float m_feedback = 0.0f;
float m_mix = 0.0f;
void m_preProcessing(audio_block_t *out, audio_block_t *dry, audio_block_t *wet);
void m_postProcessing(audio_block_t *out, audio_block_t *dry, audio_block_t *wet);
size_t m_callCount = 0;
};
}
#endif /* __BAGUITAR_BAAUDIOEFFECTANALOGDELAY_H */