You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
BALibrary_parasitstudio/src/BAAudioEffectDelayExternal.cpp

322 lines
9.9 KiB

/*
* BAAudioControlWM8731.h
*
* Created on: November 1, 2017
* Author: slascos
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.*
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "BAAudioEffectDelayExternal.h"
namespace BAGuitar {
/* Audio Library for Teensy 3.X
* Copyright (c) 2014, Paul Stoffregen, paul@pjrc.com
*
* Development of this audio library was funded by PJRC.COM, LLC by sales of
* Teensy and Audio Adaptor boards. Please support PJRC's efforts to develop
* open source software by purchasing Teensy or other PJRC products.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice, development funding notice, and this permission
* notice shall be included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
//#include "effect_delay_ext.h"
//#define INTERNAL_TEST
// While 20 MHz (Teensy actually uses 16 MHz in most cases) and even 24 MHz
// have worked well in testing at room temperature with 3.3V power, to fully
// meet all the worst case timing specs, the SPI clock low time would need
// to be 40ns (12.5 MHz clock) for the single chip case and 51ns (9.8 MHz
// clock) for the 6-chip memoryboard with 74LCX126 buffers.
//
// Timing analysis and info is here:
// https://forum.pjrc.com/threads/29276-Limits-of-delay-effect-in-audio-library?p=97506&viewfull=1#post97506
#define SPISETTING SPISettings(20000000, MSBFIRST, SPI_MODE0)
// Use these with the audio adaptor board (should be adjustable by the user...)
//#define SPIRAM_MOSI_PIN 7
//#define SPIRAM_MISO_PIN 12
//#define SPIRAM_SCK_PIN 14
//
//#define SPIRAM_CS_PIN 6
// Use with TGA Pro
#define SPIRAM_MOSI_PIN 7
#define SPIRAM_MISO_PIN 8
#define SPIRAM_SCK_PIN 14
#define SPIRAM_CS_PIN 15
#define MEMBOARD_CS0_PIN 2
#define MEMBOARD_CS1_PIN 3
#define MEMBOARD_CS2_PIN 4
void BAAudioEffectDelayExternal::update(void)
{
audio_block_t *block;
uint32_t n, channel, read_offset;
// grab incoming data and put it into the memory
block = receiveReadOnly();
if (memory_type >= BA_AUDIO_MEMORY_UNDEFINED) {
// ignore input and do nothing if undefined memory type
release(block);
return;
}
if (block) {
if (head_offset + AUDIO_BLOCK_SAMPLES <= memory_length) {
// a single write is enough
write(head_offset, AUDIO_BLOCK_SAMPLES, block->data);
head_offset += AUDIO_BLOCK_SAMPLES;
} else {
// write wraps across end-of-memory
n = memory_length - head_offset;
write(head_offset, n, block->data);
head_offset = AUDIO_BLOCK_SAMPLES - n;
write(0, head_offset, block->data + n);
}
release(block);
} else {
// if no input, store zeros, so later playback will
// not be random garbage previously stored in memory
if (head_offset + AUDIO_BLOCK_SAMPLES <= memory_length) {
zero(head_offset, AUDIO_BLOCK_SAMPLES);
head_offset += AUDIO_BLOCK_SAMPLES;
} else {
n = memory_length - head_offset;
zero(head_offset, n);
head_offset = AUDIO_BLOCK_SAMPLES - n;
zero(0, head_offset);
}
}
// transmit the delayed outputs
for (channel = 0; channel < 8; channel++) {
if (!(activemask & (1<<channel))) continue;
block = allocate();
if (!block) continue;
// compute the delayed location where we read
if (delay_length[channel] <= head_offset) {
read_offset = head_offset - delay_length[channel];
} else {
read_offset = memory_length + head_offset - delay_length[channel];
}
if (read_offset + AUDIO_BLOCK_SAMPLES <= memory_length) {
// a single read will do it
read(read_offset, AUDIO_BLOCK_SAMPLES, block->data);
} else {
// read wraps across end-of-memory
n = memory_length - read_offset;
read(read_offset, n, block->data);
read(0, AUDIO_BLOCK_SAMPLES - n, block->data + n);
}
transmit(block, channel);
release(block);
}
}
uint32_t BAAudioEffectDelayExternal::allocated[2] = {0, 0};
void BAAudioEffectDelayExternal::initialize(BAAudioEffectDelayMemoryType_t type, uint32_t samples)
{
uint32_t memsize, avail;
activemask = 0;
head_offset = 0;
memory_type = type;
SPI.setMOSI(SPIRAM_MOSI_PIN);
SPI.setMISO(SPIRAM_MISO_PIN);
SPI.setSCK(SPIRAM_SCK_PIN);
SPI.begin();
if (type == BA_AUDIO_MEMORY_23LC1024) {
#ifdef INTERNAL_TEST
memsize = 8000;
#else
memsize = 65536;
#endif
pinMode(SPIRAM_CS_PIN, OUTPUT);
digitalWriteFast(SPIRAM_CS_PIN, HIGH);
} else if (type == BA_AUDIO_MEMORY_MEMORYBOARD) {
memsize = 393216;
pinMode(MEMBOARD_CS0_PIN, OUTPUT);
pinMode(MEMBOARD_CS1_PIN, OUTPUT);
pinMode(MEMBOARD_CS2_PIN, OUTPUT);
digitalWriteFast(MEMBOARD_CS0_PIN, LOW);
digitalWriteFast(MEMBOARD_CS1_PIN, LOW);
digitalWriteFast(MEMBOARD_CS2_PIN, LOW);
} else if (type == BA_AUDIO_MEMORY_CY15B104) {
#ifdef INTERNAL_TEST
memsize = 8000;
#else
memsize = 262144;
#endif
pinMode(SPIRAM_CS_PIN, OUTPUT);
digitalWriteFast(SPIRAM_CS_PIN, HIGH);
} else {
return;
}
avail = memsize - allocated[type];
if (avail < AUDIO_BLOCK_SAMPLES*2+1) {
memory_type = BA_AUDIO_MEMORY_UNDEFINED;
return;
}
if (samples > avail) samples = avail;
memory_begin = allocated[type];
allocated[type] += samples;
memory_length = samples;
zero(0, memory_length);
}
#ifdef INTERNAL_TEST
static int16_t testmem[8000]; // testing only
#endif
void BAAudioEffectDelayExternal::read(uint32_t offset, uint32_t count, int16_t *data)
{
uint32_t addr = memory_begin + offset;
#ifdef INTERNAL_TEST
while (count) { *data++ = testmem[addr++]; count--; } // testing only
#else
if (memory_type == BA_AUDIO_MEMORY_23LC1024 ||
memory_type == BA_AUDIO_MEMORY_CY15B104) {
addr *= 2;
SPI.beginTransaction(SPISETTING);
digitalWriteFast(SPIRAM_CS_PIN, LOW);
SPI.transfer16((0x03 << 8) | (addr >> 16));
SPI.transfer16(addr & 0xFFFF);
while (count) {
*data++ = (int16_t)(SPI.transfer16(0));
count--;
}
digitalWriteFast(SPIRAM_CS_PIN, HIGH);
SPI.endTransaction();
} else if (memory_type == BA_AUDIO_MEMORY_MEMORYBOARD) {
SPI.beginTransaction(SPISETTING);
while (count) {
uint32_t chip = (addr >> 16) + 1;
digitalWriteFast(MEMBOARD_CS0_PIN, chip & 1);
digitalWriteFast(MEMBOARD_CS1_PIN, chip & 2);
digitalWriteFast(MEMBOARD_CS2_PIN, chip & 4);
uint32_t chipaddr = (addr & 0xFFFF) << 1;
SPI.transfer16((0x03 << 8) | (chipaddr >> 16));
SPI.transfer16(chipaddr & 0xFFFF);
uint32_t num = 0x10000 - (addr & 0xFFFF);
if (num > count) num = count;
count -= num;
addr += num;
do {
*data++ = (int16_t)(SPI.transfer16(0));
} while (--num > 0);
}
digitalWriteFast(MEMBOARD_CS0_PIN, LOW);
digitalWriteFast(MEMBOARD_CS1_PIN, LOW);
digitalWriteFast(MEMBOARD_CS2_PIN, LOW);
SPI.endTransaction();
}
#endif
}
void BAAudioEffectDelayExternal::write(uint32_t offset, uint32_t count, const int16_t *data)
{
uint32_t addr = memory_begin + offset;
#ifdef INTERNAL_TEST
while (count) { testmem[addr++] = *data++; count--; } // testing only
#else
if (memory_type == BA_AUDIO_MEMORY_23LC1024) {
addr *= 2;
SPI.beginTransaction(SPISETTING);
digitalWriteFast(SPIRAM_CS_PIN, LOW);
SPI.transfer16((0x02 << 8) | (addr >> 16));
SPI.transfer16(addr & 0xFFFF);
while (count) {
int16_t w = 0;
if (data) w = *data++;
SPI.transfer16(w);
count--;
}
digitalWriteFast(SPIRAM_CS_PIN, HIGH);
SPI.endTransaction();
} else if (memory_type == BA_AUDIO_MEMORY_CY15B104) {
addr *= 2;
SPI.beginTransaction(SPISETTING);
digitalWriteFast(SPIRAM_CS_PIN, LOW);
SPI.transfer(0x06); //write-enable before every write
digitalWriteFast(SPIRAM_CS_PIN, HIGH);
asm volatile ("NOP\n NOP\n NOP\n NOP\n NOP\n NOP\n");
digitalWriteFast(SPIRAM_CS_PIN, LOW);
SPI.transfer16((0x02 << 8) | (addr >> 16));
SPI.transfer16(addr & 0xFFFF);
while (count) {
int16_t w = 0;
if (data) w = *data++;
SPI.transfer16(w);
count--;
}
digitalWriteFast(SPIRAM_CS_PIN, HIGH);
SPI.endTransaction();
} else if (memory_type == BA_AUDIO_MEMORY_MEMORYBOARD) {
SPI.beginTransaction(SPISETTING);
while (count) {
uint32_t chip = (addr >> 16) + 1;
digitalWriteFast(MEMBOARD_CS0_PIN, chip & 1);
digitalWriteFast(MEMBOARD_CS1_PIN, chip & 2);
digitalWriteFast(MEMBOARD_CS2_PIN, chip & 4);
uint32_t chipaddr = (addr & 0xFFFF) << 1;
SPI.transfer16((0x02 << 8) | (chipaddr >> 16));
SPI.transfer16(chipaddr & 0xFFFF);
uint32_t num = 0x10000 - (addr & 0xFFFF);
if (num > count) num = count;
count -= num;
addr += num;
do {
int16_t w = 0;
if (data) w = *data++;
SPI.transfer16(w);
} while (--num > 0);
}
digitalWriteFast(MEMBOARD_CS0_PIN, LOW);
digitalWriteFast(MEMBOARD_CS1_PIN, LOW);
digitalWriteFast(MEMBOARD_CS2_PIN, LOW);
SPI.endTransaction();
}
#endif
}
} /* namespace BAGuitar */