You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
BALibrary_parasitstudio/src/effects/AudioEffectPitchShift.cpp

203 lines
6.5 KiB

/*
* AudioEffectPitchShift.cpp
*
* Created on: June 20, 2019
* Author: slascos
*/
#include <cmath> // std::roundf
#include "AudioEffectPitchShift.h"
using namespace BALibrary;
namespace BAEffects {
constexpr int MIDI_CHANNEL = 0;
constexpr int MIDI_CONTROL = 1;
constexpr unsigned NUM_AUDIO_BLOCKS = AudioEffectPitchShift::ANALYSIS_SIZE / AUDIO_BLOCK_SAMPLES;
constexpr uint32_t FFT_FORWARD = 0;
constexpr uint32_t FFT_INVERSE = 1;
constexpr uint32_t FFT_DO_BIT_REVERSE = 1;
AudioEffectPitchShift::AudioEffectPitchShift()
: AudioStream(1, m_inputQueueArray)
{
// clear the audio buffer to avoid pops
for (unsigned i=0; i<AudioEffectPitchShift::ANALYSIS_SIZE; i++) {
m_analysisBuffer[i] = 0.0f;
}
// Configure the FFT
// arm_rfft_init_f32(&rfftForwardInst, &cfftForwardInst, AudioEffectPitchShift::ANALYSIS_SIZE,
// FFT_FORWARD, FFT_DO_BIT_REVERSE);
// arm_rfft_init_f32(&rfftInverseInst, &cfftInverseInst, AudioEffectPitchShift::SYNTHESIS_SIZE,
// FFT_INVERSE, FFT_DO_BIT_REVERSE);
unsigned ret;
ret = arm_cfft_radix4_init_f32(&cfftForwardInst, ANALYSIS_SIZE, FFT_FORWARD, FFT_DO_BIT_REVERSE); //init FFT
if (!ret) { m_initFailed = true; };
ret = arm_cfft_radix4_init_f32(&cfftInverseInst, SYNTHESIS_SIZE, FFT_INVERSE, FFT_DO_BIT_REVERSE); //init FFT
if (!ret) { m_initFailed = true; };
}
AudioEffectPitchShift::~AudioEffectPitchShift()
{
}
void AudioEffectPitchShift::update(void)
{
audio_block_t *inputAudioBlock = receiveReadOnly(); // get the next block of input samples
// Check is block is disabled
if (m_enable == false) {
// do not transmit or process any audio, return as quickly as possible.
if (inputAudioBlock) release(inputAudioBlock);
return;
}
// Check is block is bypassed, if so either transmit input directly or create silence
if (m_bypass == true) {
// transmit the input directly
if (!inputAudioBlock) {
// create silence
inputAudioBlock = allocate();
if (!inputAudioBlock) { return; } // failed to allocate
else {
clearAudioBlock(inputAudioBlock);
}
}
transmit(inputAudioBlock, 0);
release(inputAudioBlock);
return;
}
// DO PROCESSING HERE
// Update the fifo
// m_inputFifo.push_back(inputAudioBlock); // insert the new block
// release(m_inputFifo.front()); //
// m_inputFifo.pop_front();
// Convert the contents of the audio blocks to the contiguous buffer
// 1) Be aware the audio library stores audio samples in reverse temporal order.
// This means the first sample (in time) is in the last location of the buffer.
// 2) the oldest audio is at the front of the queue, the latest at the back
float *analysisPtr = &m_analysisBuffer[0];
float *analysisFreqPtr = &m_analysisFreqBuffer[0];
float *synthesisFreqPtr = &m_synthesisFreqBuffer[0];
float *synthesisPtr = &m_synthesisBuffer[0];
// first shift the contents of the float buffer up by AUDIO_BLOCK SAMPLES
for (unsigned i=0; i<NUM_AUDIO_BLOCKS-1; i++) {
memcpy(&analysisPtr[i*AUDIO_BLOCK_SAMPLES], &analysisPtr[(i+1)*AUDIO_BLOCK_SAMPLES], AUDIO_BLOCK_SAMPLES*sizeof(float));
}
// Convert the newest incoming audio block to float
arm_q15_to_float(inputAudioBlock->data, &analysisPtr[(NUM_AUDIO_BLOCKS-1)*AUDIO_BLOCK_SAMPLES], AUDIO_BLOCK_SAMPLES);
release(inputAudioBlock); // were done with it now
//if (m_initFailed) { Serial.println("FFT INIT FAILED"); }
// Construct the interleaved FFT buffer
unsigned idx = 0;
for (unsigned i=0; i<ANALYSIS_SIZE; i++) {
m_analysisFreqBuffer[idx] = analysisPtr[i];
m_analysisFreqBuffer[idx+1] = 0;
idx += 2;
}
// Perform the FFT
arm_cfft_radix4_f32(&cfftForwardInst, analysisFreqPtr);
// perform the ocean pitch shift
m_ocean(analysisFreqPtr, synthesisFreqPtr, (float)(m_frameIndex), m_pitchScale);
//memcpy(synthesisFreqPtr, analysisFreqPtr, 2*ANALYSIS_SIZE*sizeof(float));
// Perform the inverse FFT
arm_cfft_radix4_f32(&cfftInverseInst, synthesisFreqPtr);
// Deinterleave the synthesis buffer
idx = 0;
for (unsigned i=0; i<(2*SYNTHESIS_SIZE); i=i+2) {
m_synthesisBuffer[idx] = synthesisFreqPtr[i];
idx++;
}
// Convert the float buffer back to integer
audio_block_t *outputBlock = allocate();
arm_float_to_q15 (synthesisPtr, outputBlock->data, AUDIO_BLOCK_SAMPLES);
transmit(outputBlock);
release(outputBlock);
m_frameIndex++;
}
void AudioEffectPitchShift::processMidi(int channel, int control, int value)
{
float val = (float)value / 127.0f;
if ((m_midiConfig[BYPASS][MIDI_CHANNEL] == channel) &&
(m_midiConfig[BYPASS][MIDI_CONTROL] == control)) {
// Bypass
if (value >= 65) { bypass(false); Serial.println(String("AudioEffectPitchShift::not bypassed -> ON") + value); }
else { bypass(true); Serial.println(String("AudioEffectPitchShift::bypassed -> OFF") + value); }
return;
}
if ((m_midiConfig[VOLUME][MIDI_CHANNEL] == channel) &&
(m_midiConfig[VOLUME][MIDI_CONTROL] == control)) {
// Volume
Serial.println(String("AudioEffectPitchShift::volume: ") + 100*val + String("%"));
volume(val);
return;
}
}
void AudioEffectPitchShift::mapMidiControl(int parameter, int midiCC, int midiChannel)
{
if (parameter >= NUM_CONTROLS) {
return ; // Invalid midi parameter
}
m_midiConfig[parameter][MIDI_CHANNEL] = midiChannel;
m_midiConfig[parameter][MIDI_CONTROL] = midiCC;
}
void AudioEffectPitchShift::m_ocean(float *inputFreq, float *outputFreq, float frameIndex, float pitchScale)
{
// zero the output buffer
for (unsigned i=0; i<(2*SYNTHESIS_SIZE); i++) {
outputFreq[i] = 0.0f;
}
float phaseAdjustFactor = -((2.0f*((float)(M_PI))*frameIndex)
/ (OVERLAP_FACTOR_F * FFT_OVERSAMPLE_FACTOR_F * SYNTHESIS_SIZE_F));
for (unsigned k=1; k < SYNTHESIS_SIZE/2; k++) {
float a = (float)k;
// b = mka + 0.5
// where m is the FFT oversample factor, k is the pitch scaling, a
// is the original bin number
float b = std::roundf( (FFT_OVERSAMPLE_FACTOR_F * pitchScale * a));
unsigned b_int = (unsigned)(b);
if (b_int < SYNTHESIS_SIZE/2) {
// phaseAdjust = (b-ma) * phaseAdjustFactor
float phaseAdjust = (b - (FFT_OVERSAMPLE_FACTOR_F * a)) * phaseAdjustFactor;
float a_real = inputFreq[2*k];
float a_imag = inputFreq[2*k+1];
outputFreq[2*b_int] = (a_real * arm_cos_f32(phaseAdjust)) - (a_imag * arm_sin_f32(phaseAdjust));
outputFreq[2*b_int+1] = (a_real * arm_sin_f32(phaseAdjust)) + (a_imag * arm_cos_f32(phaseAdjust));
}
// update the imag components
}
}
}