/************************************************************************* * This demo uses the BALibrary library to provide enhanced control of * the TGA Pro board. * * The latest copy of the BA Guitar library can be obtained from * https://github.com/Blackaddr/BALibrary * * This demo will provide an audio passthrough, as well as exercise the * MIDI interface. * * It can optionally exercise the SPI MEM0 if installed on the TGA Pro board. * */ #include #include #include #include #include "BALibrary.h" #include static const unsigned sUsbTransportBufferSize = 16; typedef midi::UsbTransport UsbTransport; UsbTransport sUsbTransport; MIDI_CREATE_INSTANCE(UsbTransport, sUsbTransport, uMIDI); MIDI_CREATE_DEFAULT_INSTANCE(); using namespace midi; using namespace BAEffects; #define MIDI_DEBUG using namespace BALibrary; AudioInputI2S i2sIn; AudioOutputI2S i2sOut; BAAudioControlWM8731 codec; // External SRAM is required for this effect due to the very long // delays required. ExternalSramManager externalSram; ExtMemSlot delaySlot; // Declare an external memory slot. AudioEffectSOS sos(&delaySlot); // Add some effects for our soloing channel AudioEffectDelay delayModule; // we'll add a little slapback echo AudioMixer4 gainModule; // This will be used simply to reduce the gain before the reverb AudioEffectReverb reverb; // Add a bit of 'verb to our tone AudioFilterBiquad cabFilter; // We'll want something to cut out the highs and smooth the tone, just like a guitar cab. AudioMixer4 mixer; // Connect the input AudioConnection inputToSos(i2sIn, 0, sos, 0); AudioConnection inputToSolo(i2sIn, 0, delayModule, 0); // Patch cables for the SOLO channel AudioConnection inputToGain(delayModule, 0, gainModule, 0); AudioConnection inputToReverb(gainModule, 0, reverb, 0); // Output Mixer AudioConnection mixer0input(i2sIn, 0, mixer, 0); // SOLO Dry Channel AudioConnection mixer1input(reverb, 0, mixer, 1); // SOLO Wet Channel AudioConnection mixer2input(sos, 0, mixer, 2); // SOS Channel AudioConnection inputToCab(mixer, 0, cabFilter, 0); // CODEC Outputs AudioConnection outputLeft(cabFilter, 0, i2sOut, 0); AudioConnection outputRight(cabFilter, 0, i2sOut, 1); int loopCount = 0; void OnControlChange(byte channel, byte control, byte value) { sos.processMidi(channel-1, control, value); #ifdef MIDI_DEBUG Serial.print("Control Change, ch="); Serial.print(channel, DEC); Serial.print(", control="); Serial.print(control, DEC); Serial.print(", value="); Serial.print(value, DEC); Serial.println(); #endif } void setup() { delay(100); Serial.begin(57600); // Start the serial port // Disable the codec first codec.disable(); delay(100); AudioMemory(128); delay(5); // Enable the codec Serial.println("Enabling codec...\n"); codec.enable(); delay(100); // We have to request memory be allocated to our slot. externalSram.requestMemory(&delaySlot, SPI_MEM0_SIZE_BYTES, MemSelect::MEM0, true); //externalSram.requestMemory(&delaySlot, 50.0f, MemSelect::MEM0, true); // Setup MIDI MIDI.begin(MIDI_CHANNEL_OMNI); MIDI.setHandleControlChange(OnControlChange); uMIDI.begin(MIDI_CHANNEL_OMNI); uMIDI.setHandleControlChange(OnControlChange); // Configure the LED to indicate the gate status sos.setGateLedGpio(USR_LED_ID); // Configure which MIDI CC's will control the effect parameters sos.mapMidiControl(AudioEffectSOS::BYPASS,16); sos.mapMidiControl(AudioEffectSOS::CLEAR_FEEDBACK_TRIGGER,22); sos.mapMidiControl(AudioEffectSOS::GATE_TRIGGER,23); sos.mapMidiControl(AudioEffectSOS::GATE_OPEN_TIME,20); sos.mapMidiControl(AudioEffectSOS::GATE_CLOSE_TIME,21); sos.mapMidiControl(AudioEffectSOS::FEEDBACK,24); sos.mapMidiControl(AudioEffectSOS::VOLUME,17); // Besure to enable the delay. When disabled, audio is is completely blocked // to minimize resources to nearly zero. sos.enable(); // Set some default values. // These can be changed by sending MIDI CC messages over the USB using // the BAMidiTester application. sos.bypass(false); sos.gateOpenTime(3000.0f); sos.gateCloseTime(1000.0f); sos.feedback(0.9f); // Setup effects on the SOLO channel gainModule.gain(0, 0.25); // the reverb unit clips easily if the input is too high delayModule.delay(0, 50.0f); // 50 ms slapback delay // Setup 2-stages of LPF, cutoff 4500 Hz, Q-factor 0.7071 (a 'normal' Q-factor) cabFilter.setLowpass(0, 4500, .7071); cabFilter.setLowpass(1, 4500, .7071); // Setup the Mixer mixer.gain(0, 0.5f); // SOLO Dry gain mixer.gain(1, 0.5f); // SOLO Wet gain mixer.gain(1, 1.0f); // SOS gain } void loop() { // usbMIDI.read() needs to be called rapidly from loop(). When // each MIDI messages arrives, it return true. The message must // be fully processed before usbMIDI.read() is called again. if (loopCount % 524288 == 0) { Serial.print("Processor Usage, Total: "); Serial.print(AudioProcessorUsage()); Serial.print("% "); Serial.print(" sos: "); Serial.print(sos.processorUsage()); Serial.println("%"); } loopCount++; MIDI.read(); uMIDI.read(); // // check for new MIDI from USB // if (usbMIDI.read()) { // // this code entered only if new MIDI received // byte type, channel, data1, data2, cable; // type = usbMIDI.getType(); // which MIDI message, 128-255 // channel = usbMIDI.getChannel(); // which MIDI channel, 1-16 // data1 = usbMIDI.getData1(); // first data byte of message, 0-127 // data2 = usbMIDI.getData2(); // second data byte of message, 0-127 // Serial.println(String("Received a MIDI message on channel ") + channel); // // if (type == MidiType::ControlChange) { // // if type is 3, it's a CC MIDI Message // // Note: the Arduino MIDI library encodes channels as 1-16 instead // // of 0 to 15 as it should, so we must subtract one. // OnControlChange(channel-1, data1, data2); // } // } }