#include #include "BALibrary.h" using namespace midi; using namespace BAEffects; using namespace BALibrary; AudioInputI2S i2sIn; AudioOutputI2S i2sOut; BAAudioControlWM8731 codec; /// IMPORTANT ///// // YOU MUST USE TEENSYDUINO 1.41 or greater // YOU MUST COMPILE THIS DEMO USING Serial + Midi //#define USE_EXT // uncomment this line to use External MEM0 #define MIDI_DEBUG // uncomment to see raw MIDI info in terminal #ifdef USE_EXT // If using external SPI memory, we will instantiance an SRAM // manager and create an external memory slot to use as the memory // for our audio delay ExternalSramManager externalSram; ExtMemSlot delaySlot; // Declare an external memory slot. // Instantiate the AudioEffectAnalogDelay to use external memory by /// passing it the delay slot. AudioEffectAnalogDelay analogDelay(&delaySlot); #else // If using internal memory, we will instantiate the AudioEffectAnalogDelay // by passing it the maximum amount of delay we will use in millseconds. Note that // audio delay lengths are very limited when using internal memory due to limited // internal RAM size. AudioEffectAnalogDelay analogDelay(200.0f); // max delay of 200 ms. #endif AudioFilterBiquad cabFilter; // We'll want something to cut out the highs and smooth the tone, just like a guitar cab. // Record the audio to the PC //AudioOutputUSB usb; // Simply connect the input to the delay, and the output // to both i2s channels AudioConnection input(i2sIn,0, analogDelay,0); AudioConnection delayOut(analogDelay, 0, cabFilter, 0); AudioConnection leftOut(cabFilter,0, i2sOut, 0); AudioConnection rightOut(cabFilter,0, i2sOut, 1); //AudioConnection leftOutUSB(cabFilter,0, usb, 0); //AudioConnection rightOutUSB(cabFilter,0, usb, 1); int loopCount = 0; void setup() { delay(100); Serial.begin(57600); // Start the serial port // Disable the codec first codec.disable(); delay(100); AudioMemory(128); delay(5); // Enable the codec Serial.println("Enabling codec...\n"); codec.enable(); delay(100); // If using external memory request request memory from the manager // for the slot #ifdef USE_EXT Serial.println("Using EXTERNAL memory"); // We have to request memory be allocated to our slot. externalSram.requestMemory(&delaySlot, 500.0f, MemSelect::MEM0, true); #else Serial.println("Using INTERNAL memory"); #endif // Configure which MIDI CC's will control the effect parameters analogDelay.mapMidiControl(AudioEffectAnalogDelay::BYPASS,16); analogDelay.mapMidiControl(AudioEffectAnalogDelay::DELAY,20); analogDelay.mapMidiControl(AudioEffectAnalogDelay::FEEDBACK,21); analogDelay.mapMidiControl(AudioEffectAnalogDelay::MIX,22); analogDelay.mapMidiControl(AudioEffectAnalogDelay::VOLUME,23); // Besure to enable the delay. When disabled, audio is is completely blocked // to minimize resources to nearly zero. analogDelay.enable(); // Set some default values. // These can be changed by sending MIDI CC messages over the USB using // the BAMidiTester application. analogDelay.delay(200.0f); // initial delay of 200 ms analogDelay.bypass(false); analogDelay.mix(0.5f); analogDelay.feedback(0.0f); ////////////////////////////////// // AnalogDelay filter selection // // Uncomment to tryout the 3 different built-in filters. //analogDelay.setFilter(AudioEffectAnalogDelay::Filter::DM3); // The default filter. Naturally bright echo (highs stay, lows fade away) //analogDelay.setFilter(AudioEffectAnalogDelay::Filter::WARM); // A warm filter with a smooth frequency rolloff above 2Khz //analogDelay.setFilter(AudioEffectAnalogDelay::Filter::DARK); // A very dark filter, with a sharp rolloff above 1Khz // Setup 2-stages of LPF, cutoff 4500 Hz, Q-factor 0.7071 (a 'normal' Q-factor) cabFilter.setLowpass(0, 4500, .7071); cabFilter.setLowpass(1, 4500, .7071); } void OnControlChange(byte channel, byte control, byte value) { analogDelay.processMidi(channel, control, value); #ifdef MIDI_DEBUG Serial.print("Control Change, ch="); Serial.print(channel, DEC); Serial.print(", control="); Serial.print(control, DEC); Serial.print(", value="); Serial.print(value, DEC); Serial.println(); #endif } void loop() { // usbMIDI.read() needs to be called rapidly from loop(). When // each MIDI messages arrives, it return true. The message must // be fully processed before usbMIDI.read() is called again. if (loopCount % 524288 == 0) { Serial.print("Processor Usage, Total: "); Serial.print(AudioProcessorUsage()); Serial.print("% "); Serial.print(" analogDelay: "); Serial.print(analogDelay.processorUsage()); Serial.println("%"); } loopCount++; // check for new MIDI from USB if (usbMIDI.read()) { // this code entered only if new MIDI received byte type, channel, data1, data2, cable; type = usbMIDI.getType(); // which MIDI message, 128-255 channel = usbMIDI.getChannel(); // which MIDI channel, 1-16 data1 = usbMIDI.getData1(); // first data byte of message, 0-127 data2 = usbMIDI.getData2(); // second data byte of message, 0-127 Serial.println(String("Received a MIDI message on channel ") + channel); if (type == MidiType::ControlChange) { // if type is 3, it's a CC MIDI Message // Note: the Arduino MIDI library encodes channels as 1-16 instead // of 0 to 15 as it should, so we must subtract one. OnControlChange(channel-1, data1, data2); } } }