/* * AudioEffectSOS.cpp * * Created on: Apr 14, 2018 * Author: blackaddr */ #include "AudioEffectSOS.h" #include "LibBasicFunctions.h" using namespace BALibrary; namespace BAEffects { constexpr int MIDI_CHANNEL = 0; constexpr int MIDI_CONTROL = 1; constexpr float MAX_GATE_OPEN_TIME_MS = 3000.0f; constexpr float MAX_GATE_CLOSE_TIME_MS = 1000.0f; constexpr int GATE_OPEN_STAGE = 0; constexpr int GATE_HOLD_STAGE = 1; constexpr int GATE_CLOSE_STAGE = 2; AudioEffectSOS::AudioEffectSOS(float maxDelayMs) : AudioStream(1, m_inputQueueArray) { m_memory = new AudioDelay(maxDelayMs); m_maxDelaySamples = calcAudioSamples(maxDelayMs); m_externalMemory = false; } AudioEffectSOS::AudioEffectSOS(size_t numSamples) : AudioStream(1, m_inputQueueArray) { m_memory = new AudioDelay(numSamples); m_maxDelaySamples = numSamples; m_externalMemory = false; } AudioEffectSOS::AudioEffectSOS(ExtMemSlot *slot) : AudioStream(1, m_inputQueueArray) { m_memory = new AudioDelay(slot); m_externalMemory = true; } AudioEffectSOS::~AudioEffectSOS() { if (m_memory) delete m_memory; } void AudioEffectSOS::setGateLedGpio(int pinId) { m_gateLedPinId = pinId; pinMode(static_cast(m_gateLedPinId), OUTPUT); } void AudioEffectSOS::enable(void) { m_enable = true; if (m_externalMemory) { // Because we hold the previous output buffer for an update cycle, the maximum delay is actually // 1 audio block mess then the max delay returnable from the memory. m_maxDelaySamples = m_memory->getMaxDelaySamples(); Serial.println(String("SOS Enabled with delay length ") + m_maxDelaySamples + String(" samples")); } m_delaySamples = m_maxDelaySamples; m_inputGateAuto.setupParameter(GATE_OPEN_STAGE, 0.0f, 1.0f, 1000.0f, ParameterAutomation::Function::EXPONENTIAL); m_inputGateAuto.setupParameter(GATE_HOLD_STAGE, 1.0f, 1.0f, m_maxDelaySamples, ParameterAutomation::Function::HOLD); m_inputGateAuto.setupParameter(GATE_CLOSE_STAGE, 1.0f, 0.0f, 1000.0f, ParameterAutomation::Function::EXPONENTIAL); m_clearFeedbackAuto.setupParameter(GATE_OPEN_STAGE, 1.0f, 0.0f, 1000.0f, ParameterAutomation::Function::EXPONENTIAL); m_clearFeedbackAuto.setupParameter(GATE_HOLD_STAGE, 0.0f, 0.0f, m_maxDelaySamples, ParameterAutomation::Function::HOLD); m_clearFeedbackAuto.setupParameter(GATE_CLOSE_STAGE, 0.0f, 1.0f, 1000.0f, ParameterAutomation::Function::EXPONENTIAL); } void AudioEffectSOS::update(void) { audio_block_t *inputAudioBlock = receiveReadOnly(); // get the next block of input samples // Check is block is disabled if (m_enable == false) { // do not transmit or process any audio, return as quickly as possible. if (inputAudioBlock) release(inputAudioBlock); // release all held memory resources if (m_previousBlock) { release(m_previousBlock); m_previousBlock = nullptr; } if (!m_externalMemory) { // when using internal memory we have to release all references in the ring buffer while (m_memory->getRingBuffer()->size() > 0) { audio_block_t *releaseBlock = m_memory->getRingBuffer()->front(); m_memory->getRingBuffer()->pop_front(); if (releaseBlock) release(releaseBlock); } } return; } // Check is block is bypassed, if so either transmit input directly or create silence if ( (m_bypass == true) || (!inputAudioBlock) ) { // transmit the input directly if (!inputAudioBlock) { // create silence inputAudioBlock = allocate(); if (!inputAudioBlock) { return; } // failed to allocate else { clearAudioBlock(inputAudioBlock); } } transmit(inputAudioBlock, 0); release(inputAudioBlock); return; } if (!inputAudioBlock) return; // Otherwise perform normal processing // In order to make use of the SPI DMA, we need to request the read from memory first, // then do other processing while it fills in the back. audio_block_t *blockToOutput = nullptr; // this will hold the output audio blockToOutput = allocate(); if (!blockToOutput) return; // skip this update cycle due to failure // get the data. If using external memory with DMA, this won't be filled until // later. m_memory->getSamples(blockToOutput, m_delaySamples); //Serial.println(String("Delay samples:") + m_delaySamples); //Serial.println(String("Use dma: ") + m_memory->getSlot()->isUseDma()); // If using DMA, we need something else to do while that read executes, so // move on to input preprocessing // Preprocessing audio_block_t *preProcessed = allocate(); // mix the input with the feedback path in the pre-processing stage m_preProcessing(preProcessed, inputAudioBlock, m_previousBlock); // consider doing the BBD post processing here to use up more time while waiting // for the read data to come back audio_block_t *blockToRelease = m_memory->addBlock(preProcessed); //audio_block_t *blockToRelease = m_memory->addBlock(inputAudioBlock); //Serial.println("Done adding new block"); // BACK TO OUTPUT PROCESSING // Check if external DMA, if so, we need to be sure the read is completed if (m_externalMemory && m_memory->getSlot()->isUseDma()) { // Using DMA while (m_memory->getSlot()->isReadBusy()) {} } // perform the wet/dry mix mix m_postProcessing(blockToOutput, blockToOutput); transmit(blockToOutput); release(inputAudioBlock); if (m_previousBlock) release(m_previousBlock); m_previousBlock = blockToOutput; if (m_blockToRelease == m_previousBlock) { Serial.println("ERROR: POINTER COLLISION"); } if (m_blockToRelease) release(m_blockToRelease); m_blockToRelease = blockToRelease; } void AudioEffectSOS::gateOpenTime(float milliseconds) { // TODO - change the paramter automation to an automation sequence m_openTimeMs = milliseconds; m_inputGateAuto.setupParameter(GATE_OPEN_STAGE, 0.0f, 1.0f, m_openTimeMs, ParameterAutomation::Function::EXPONENTIAL); //m_clearFeedbackAuto.setupParameter(GATE_OPEN_STAGE, 1.0f, 0.0f, m_openTimeMs, ParameterAutomation::Function::EXPONENTIAL); } void AudioEffectSOS::gateCloseTime(float milliseconds) { m_closeTimeMs = milliseconds; m_inputGateAuto.setupParameter(GATE_CLOSE_STAGE, 1.0f, 0.0f, m_closeTimeMs, ParameterAutomation::Function::EXPONENTIAL); //m_clearFeedbackAuto.setupParameter(GATE_CLOSE_STAGE, 0.0f, 1.0f, m_closeTimeMs, ParameterAutomation::Function::EXPONENTIAL); } //////////////////////////////////////////////////////////////////////// // MIDI PROCESSING //////////////////////////////////////////////////////////////////////// void AudioEffectSOS::processMidi(int channel, int control, int value) { float val = (float)value / 127.0f; if ((m_midiConfig[GATE_OPEN_TIME][MIDI_CHANNEL] == channel) && (m_midiConfig[GATE_OPEN_TIME][MIDI_CONTROL] == control)) { // Gate Open Time gateOpenTime(val * MAX_GATE_OPEN_TIME_MS); Serial.println(String("AudioEffectSOS::gate open time (ms): ") + m_openTimeMs); return; } if ((m_midiConfig[GATE_CLOSE_TIME][MIDI_CHANNEL] == channel) && (m_midiConfig[GATE_CLOSE_TIME][MIDI_CONTROL] == control)) { // Gate Close Time gateCloseTime(val * MAX_GATE_CLOSE_TIME_MS); Serial.println(String("AudioEffectSOS::gate close time (ms): ") + m_closeTimeMs); return; } if ((m_midiConfig[FEEDBACK][MIDI_CHANNEL] == channel) && (m_midiConfig[FEEDBACK][MIDI_CONTROL] == control)) { // Feedback Serial.println(String("AudioEffectSOS::feedback: ") + 100*val + String("%")); feedback(val); return; } if ((m_midiConfig[VOLUME][MIDI_CHANNEL] == channel) && (m_midiConfig[VOLUME][MIDI_CONTROL] == control)) { // Volume Serial.println(String("AudioEffectSOS::volume: ") + 100*val + String("%")); volume(val); return; } if ((m_midiConfig[BYPASS][MIDI_CHANNEL] == channel) && (m_midiConfig[BYPASS][MIDI_CONTROL] == control)) { // Bypass if (value >= 65) { bypass(false); Serial.println(String("AudioEffectSOS::not bypassed -> ON") + value); } else { bypass(true); Serial.println(String("AudioEffectSOS::bypassed -> OFF") + value); } return; } if ((m_midiConfig[GATE_TRIGGER][MIDI_CHANNEL] == channel) && (m_midiConfig[GATE_TRIGGER][MIDI_CONTROL] == control)) { // The gate is triggered by any value Serial.println(String("AudioEffectSOS::Gate Triggered!")); m_inputGateAuto.trigger(); return; } if ((m_midiConfig[CLEAR_FEEDBACK_TRIGGER][MIDI_CHANNEL] == channel) && (m_midiConfig[CLEAR_FEEDBACK_TRIGGER][MIDI_CONTROL] == control)) { // The gate is triggered by any value Serial.println(String("AudioEffectSOS::Clear feedback Triggered!")); m_clearFeedbackAuto.trigger(); return; } } void AudioEffectSOS::mapMidiControl(int parameter, int midiCC, int midiChannel) { if (parameter >= NUM_CONTROLS) { return ; // Invalid midi parameter } m_midiConfig[parameter][MIDI_CHANNEL] = midiChannel; m_midiConfig[parameter][MIDI_CONTROL] = midiCC; } ////////////////////////////////////////////////////////////////////// // PRIVATE FUNCTIONS ////////////////////////////////////////////////////////////////////// void AudioEffectSOS::m_preProcessing (audio_block_t *out, audio_block_t *input, audio_block_t *delayedSignal) { if ( out && input && delayedSignal) { // Multiply the input signal by the automated gate value // Multiply the delayed signal by the user set feedback value // Then combine the two float gateVol = m_inputGateAuto.getNextValue(); float feedbackAdjust = m_clearFeedbackAuto.getNextValue(); audio_block_t tempAudioBuffer; gainAdjust(out, input, gateVol, 0); // last paremeter is coeff shift, 0 bits gainAdjust(&tempAudioBuffer, delayedSignal, m_feedback*feedbackAdjust, 0); // last parameter is coeff shift, 0 bits combine(out, out, &tempAudioBuffer); } else if (input) { memcpy(out->data, input->data, sizeof(int16_t) * AUDIO_BLOCK_SAMPLES); } // Update the gate LED if (m_gateLedPinId >= 0) { if (m_inputGateAuto.isFinished() && m_clearFeedbackAuto.isFinished()) { digitalWriteFast(m_gateLedPinId, 0x0); } else { digitalWriteFast(m_gateLedPinId, 0x1); } } } void AudioEffectSOS::m_postProcessing(audio_block_t *out, audio_block_t *in) { gainAdjust(out, out, m_volume, 0); } } // namespace BAEffects