/* * AudioEffectAnalogDelay.cpp * * Created on: Jan 7, 2018 * Author: slascos */ #include #include "AudioEffectAnalogDelayFilters.h" #include "AudioEffectAnalogDelay.h" using namespace BALibrary; namespace BAEffects { constexpr int MIDI_CHANNEL = 0; constexpr int MIDI_CONTROL = 1; AudioEffectAnalogDelay::AudioEffectAnalogDelay(float maxDelayMs) : AudioStream(1, m_inputQueueArray) { m_memory = new AudioDelay(maxDelayMs); m_maxDelaySamples = calcAudioSamples(maxDelayMs); m_constructFilter(); } AudioEffectAnalogDelay::AudioEffectAnalogDelay(size_t numSamples) : AudioStream(1, m_inputQueueArray) { m_memory = new AudioDelay(numSamples); m_maxDelaySamples = numSamples; m_constructFilter(); } // requires preallocated memory large enough AudioEffectAnalogDelay::AudioEffectAnalogDelay(ExtMemSlot *slot) : AudioStream(1, m_inputQueueArray) { m_memory = new AudioDelay(slot); m_maxDelaySamples = (slot->size() / sizeof(int16_t)); m_externalMemory = true; m_constructFilter(); } AudioEffectAnalogDelay::~AudioEffectAnalogDelay() { if (m_memory) delete m_memory; if (m_iir) delete m_iir; } // This function just sets up the default filter and coefficients void AudioEffectAnalogDelay::m_constructFilter(void) { // Use DM3 coefficients by default m_iir = new IirBiQuadFilterHQ(DM3_NUM_STAGES, reinterpret_cast(&DM3), DM3_COEFF_SHIFT); } void AudioEffectAnalogDelay::setFilterCoeffs(int numStages, const int32_t *coeffs, int coeffShift) { m_iir->changeFilterCoeffs(numStages, coeffs, coeffShift); } void AudioEffectAnalogDelay::setFilter(Filter filter) { switch(filter) { case Filter::WARM : m_iir->changeFilterCoeffs(WARM_NUM_STAGES, reinterpret_cast(&WARM), WARM_COEFF_SHIFT); break; case Filter::DARK : m_iir->changeFilterCoeffs(DARK_NUM_STAGES, reinterpret_cast(&DARK), DARK_COEFF_SHIFT); break; case Filter::DM3 : default: m_iir->changeFilterCoeffs(DM3_NUM_STAGES, reinterpret_cast(&DM3), DM3_COEFF_SHIFT); break; } } void AudioEffectAnalogDelay::update(void) { audio_block_t *inputAudioBlock = receiveReadOnly(); // get the next block of input samples // Check is block is disabled if (m_enable == false) { // do not transmit or process any audio, return as quickly as possible. if (inputAudioBlock) release(inputAudioBlock); // release all held memory resources if (m_previousBlock) { release(m_previousBlock); m_previousBlock = nullptr; } if (!m_externalMemory) { // when using internal memory we have to release all references in the ring buffer while (m_memory->getRingBuffer()->size() > 0) { audio_block_t *releaseBlock = m_memory->getRingBuffer()->front(); m_memory->getRingBuffer()->pop_front(); if (releaseBlock) release(releaseBlock); } } return; } // Check is block is bypassed, if so either transmit input directly or create silence if (m_bypass == true) { // transmit the input directly if (!inputAudioBlock) { // create silence inputAudioBlock = allocate(); if (!inputAudioBlock) { return; } // failed to allocate else { clearAudioBlock(inputAudioBlock); } } transmit(inputAudioBlock, 0); release(inputAudioBlock); return; } // Otherwise perform normal processing // In order to make use of the SPI DMA, we need to request the read from memory first, // then do other processing while it fills in the back. audio_block_t *blockToOutput = nullptr; // this will hold the output audio blockToOutput = allocate(); if (!blockToOutput) return; // skip this update cycle due to failure // get the data. If using external memory with DMA, this won't be filled until // later. m_memory->getSamples(blockToOutput, m_delaySamples); // If using DMA, we need something else to do while that read executes, so // move on to input preprocessing // Preprocessing audio_block_t *preProcessed = allocate(); // mix the input with the feedback path in the pre-processing stage m_preProcessing(preProcessed, inputAudioBlock, m_previousBlock); // consider doing the BBD post processing here to use up more time while waiting // for the read data to come back audio_block_t *blockToRelease = m_memory->addBlock(preProcessed); // BACK TO OUTPUT PROCESSING // Check if external DMA, if so, we need to be sure the read is completed if (m_externalMemory && m_memory->getSlot()->isUseDma()) { // Using DMA while (m_memory->getSlot()->isReadBusy()) {} } // perform the wet/dry mix mix m_postProcessing(blockToOutput, inputAudioBlock, blockToOutput); transmit(blockToOutput); release(inputAudioBlock); release(m_previousBlock); m_previousBlock = blockToOutput; if (m_blockToRelease) release(m_blockToRelease); m_blockToRelease = blockToRelease; } void AudioEffectAnalogDelay::delay(float milliseconds) { size_t delaySamples = calcAudioSamples(milliseconds); if (delaySamples > m_memory->getMaxDelaySamples()) { // this exceeds max delay value, limit it. delaySamples = m_memory->getMaxDelaySamples(); } if (!m_memory) { Serial.println("delay(): m_memory is not valid"); } if (!m_externalMemory) { // internal memory //QueuePosition queuePosition = calcQueuePosition(milliseconds); //Serial.println(String("CONFIG: delay:") + delaySamples + String(" queue position ") + queuePosition.index + String(":") + queuePosition.offset); } else { // external memory //Serial.println(String("CONFIG: delay:") + delaySamples); ExtMemSlot *slot = m_memory->getSlot(); if (!slot) { Serial.println("ERROR: slot ptr is not valid"); } if (!slot->isEnabled()) { slot->enable(); Serial.println("WEIRD: slot was not enabled"); } } m_delaySamples = delaySamples; } void AudioEffectAnalogDelay::delay(size_t delaySamples) { if (!m_memory) { Serial.println("delay(): m_memory is not valid"); } if (!m_externalMemory) { // internal memory //QueuePosition queuePosition = calcQueuePosition(delaySamples); //Serial.println(String("CONFIG: delay:") + delaySamples + String(" queue position ") + queuePosition.index + String(":") + queuePosition.offset); } else { // external memory //Serial.println(String("CONFIG: delay:") + delaySamples); ExtMemSlot *slot = m_memory->getSlot(); if (!slot->isEnabled()) { slot->enable(); } } m_delaySamples = delaySamples; } void AudioEffectAnalogDelay::delayFractionMax(float delayFraction) { size_t delaySamples = static_cast(static_cast(m_memory->getMaxDelaySamples()) * delayFraction); if (delaySamples > m_memory->getMaxDelaySamples()) { // this exceeds max delay value, limit it. delaySamples = m_memory->getMaxDelaySamples(); } if (!m_memory) { Serial.println("delay(): m_memory is not valid"); } if (!m_externalMemory) { // internal memory //QueuePosition queuePosition = calcQueuePosition(delaySamples); //Serial.println(String("CONFIG: delay:") + delaySamples + String(" queue position ") + queuePosition.index + String(":") + queuePosition.offset); } else { // external memory //Serial.println(String("CONFIG: delay:") + delaySamples); ExtMemSlot *slot = m_memory->getSlot(); if (!slot->isEnabled()) { slot->enable(); } } m_delaySamples = delaySamples; } void AudioEffectAnalogDelay::m_preProcessing(audio_block_t *out, audio_block_t *dry, audio_block_t *wet) { if ( out && dry && wet) { alphaBlend(out, dry, wet, m_feedback); m_iir->process(out->data, out->data, AUDIO_BLOCK_SAMPLES); } else if (dry) { memcpy(out->data, dry->data, sizeof(int16_t) * AUDIO_BLOCK_SAMPLES); } } void AudioEffectAnalogDelay::m_postProcessing(audio_block_t *out, audio_block_t *dry, audio_block_t *wet) { if (!out) return; // no valid output buffer if ( out && dry && wet) { // Simulate the LPF IIR nature of the analog systems //m_iir->process(wet->data, wet->data, AUDIO_BLOCK_SAMPLES); alphaBlend(out, dry, wet, m_mix); } else if (dry) { memcpy(out->data, dry->data, sizeof(int16_t) * AUDIO_BLOCK_SAMPLES); } // Set the output volume gainAdjust(out, out, m_volume, 1); } void AudioEffectAnalogDelay::processMidi(int channel, int control, int value) { float val = (float)value / 127.0f; if ((m_midiConfig[DELAY][MIDI_CHANNEL] == channel) && (m_midiConfig[DELAY][MIDI_CONTROL] == control)) { // Delay if (m_externalMemory) { m_maxDelaySamples = m_memory->getSlot()->size() / sizeof(int16_t); } size_t delayVal = (size_t)(val * (float)m_maxDelaySamples); delay(delayVal); Serial.println(String("AudioEffectAnalogDelay::delay (ms): ") + calcAudioTimeMs(delayVal) + String(" (samples): ") + delayVal + String(" out of ") + m_maxDelaySamples); return; } if ((m_midiConfig[BYPASS][MIDI_CHANNEL] == channel) && (m_midiConfig[BYPASS][MIDI_CONTROL] == control)) { // Bypass if (value >= 65) { bypass(false); Serial.println(String("AudioEffectAnalogDelay::not bypassed -> ON") + value); } else { bypass(true); Serial.println(String("AudioEffectAnalogDelay::bypassed -> OFF") + value); } return; } if ((m_midiConfig[FEEDBACK][MIDI_CHANNEL] == channel) && (m_midiConfig[FEEDBACK][MIDI_CONTROL] == control)) { // Feedback Serial.println(String("AudioEffectAnalogDelay::feedback: ") + 100*val + String("%")); feedback(val); return; } if ((m_midiConfig[MIX][MIDI_CHANNEL] == channel) && (m_midiConfig[MIX][MIDI_CONTROL] == control)) { // Mix Serial.println(String("AudioEffectAnalogDelay::mix: Dry: ") + 100*(1-val) + String("% Wet: ") + 100*val ); mix(val); return; } if ((m_midiConfig[VOLUME][MIDI_CHANNEL] == channel) && (m_midiConfig[VOLUME][MIDI_CONTROL] == control)) { // Volume Serial.println(String("AudioEffectAnalogDelay::volume: ") + 100*val + String("%")); volume(val); return; } } void AudioEffectAnalogDelay::mapMidiControl(int parameter, int midiCC, int midiChannel) { if (parameter >= NUM_CONTROLS) { return ; // Invalid midi parameter } m_midiConfig[parameter][MIDI_CHANNEL] = midiChannel; m_midiConfig[parameter][MIDI_CONTROL] = midiCC; } }